
DTIC.,

. C

QDEC 1~B

AN\ OBJECT ORIENTED ANALYSIS METHOD
FOR Ada AND EMBEDDED SYSTEMS

THESIS

I Steven G. Mfarch
Captain, USAF

A FIT G CS/EN C /89 -1

A~ro;edj 1 ~.pIG'Ga64

DEPARTMENT OF THE AIR FORCE*1) AIR UNIVERSITY

1 AIR FORCE INSTITUTE OF TECHNOLOGY

1- Wright-Patterson Air Force Base, Ohio

K 89 12 14OD

I

.\ F-1I'GCS/ I N C/89D-1

I
1

AN OBJECT ORIENTED ANALYSIS METHOD

I FOR Ada AND EMBEDDED SYSTEMS

I
T I FI ESIS

I
Presented to th,' Faculty of the School of Engineering

I of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

i Requirements for the Degree of

Master of Science in Computer Engineering -

St ve'n G-1. .Irch. B.S..

Captain, USAF)U,

I U Decembher. 1989 Dict

I-I f r

I *\~• • PpI ' fI) I Jrrlaedirrbtiniln t

I
I

I A ckn o w ledm Ten ts

3 This tliesis could not have been possible without the help and ericoutrager1fif,

a number of people. First, I'd like to thank my thesis advisor. Maj)a% id 1'

I for his guidance. patience, and understanding during the course of this research. () ,)

(1i>ctlssions gave me the insight arid perspective to pursue what at times seenii,i ;I!

Iimpossible goal. I would also like to thank my committee members. .t I h,!i

\alusek and Ma.) .ames Ilowatt for their constructive critiques and ideas.

A- specia word of thanks goes out to Don Princiotta. His friendship and III,

was an invaluable asset in the form of reseal -h leads and honest crtl icisI.

Finally. but iost importantly. nv deepest gratitude to my wife. Dianin,. 11,

I ()iista ait encouragement. support. and understanding enabled me to apply the c,.,,

lleeled to accomiplish this thesis.

3Steven (;. I.,",>

£
I
I
I
I
I
I

!I

I

I Table of Contents

Acknowledgmi ts

T'able of 'onitenlts .

List of Figures

L~ist of T ables .

6s .- K rict ..

i lt Inroductionl .

1.1t Background . I-

1.2 Problem Definition. 13

1.3 Scope _3

L.4 Approach and Overview....-

3 1. 1.1 Review c, Current Analysis Techniques. .

1.4.2 00A Method Development

31.4.3 Require* -Is for an 00;% Tool.

1..4 Method 'ation...

11.5 Maximum Expected Gainl..- T

11.6 Sequence of Presentation).

It. Jjtorat ire Snrvey...

3 ~~2. 1 0 bject-.0riented Tech ni1qutes In thle Design Phase

12.1.1 Object M1odel..

9.1.2 Object-Oriented lDesign (00D).

2.2 The Definition Phase .- .1

£2.2.1 Software Requirements Analysis .- . I...

2.2.2 Information Capt ured During A nalvsis......2-1 1

2.2.3 Requirements Analysis Tools .2-

£2.2.4 Approaches to Software ieqirements A; alvsis. T-

2.2.5 Sumnmar% -

2.3 Object-Oriented System Mlodels..

2..3.1 Translating Traditional Models1 2.3.2 "True"' Object- Oriented Approaches.-

2.4 Sum-mary.....

Al. .n Object Oriented Analysis Method....

3:3.1 Goals of an Object-O0riented Analy-sis Method . -..2

3.1.1 User Orientation..

13.1.2 Ease of Use- 2

3.1.3 Information Captured.

3.1.4 Other Requirements...

5 3.2 General Approach to Object-Oriented A\nalysis

3.2.1 Role in the Life Cycle..

13.2.2 Method Tools..

.3Steps i.-i the Object-Oriented Analysis Mthd...

.3.3.1 Step One: Capture the Domain Expert's View. 2-3 ~3.3.2 Step Two: AXdd St ructuire to thle Requirements. 3

.3.3.3 Sample ;\Awisis Problem

33. 1 Maipping to an Object -Oriented DesIgfTl...-

Requilremlents for ank Object-Oric-nted Analvsis Tool .-

£1.1 Framework for 00A Tool Description 1-1

-1. Relationships Among Models in the Object-Oriented A\naly-

sis Method. 1-2

1.3 General Requirements for an Object -Orient ed Analysis

Tool

1 4. 1 Storyboards of the Object-Oriented Analysis Tool . . . -'

4.4.1 Capturing Software Requirements

1 .4.2 Structuring Softwisre Rec ilrien-i

-4.5 Conclusion....

V. Validat ion of the Object-O0riented Analysis Mlethod

35. 1 Analysis Problem Description....

5.2 Results of Applying the OOA Mlethod.........

15.2.1 Comparison WiVth Method Coals

.5-2.2 Comparison With Other Analysis Approaches .7-

53Conclusion....

V \i. (ojiclirsions and Recommenidat ions...

6.!1 Summary.......

I6.2 Conclusions.....

36.3 Recommendatilonls...

('1 losing Remuarks...

I Aj ldx A. :\ nalysis of aun Elevator (oit rol System.

3.\ . IPurpose, of l"evator (Control Syst em.

S\ .2 (Concept Map's....

A .. 3 Story Boards

I Lven Tt /I~ (spl)Olse iA t.2

A.5 Known Software Restrict'ons A-2('

A. \6 Metarequiremients :\2)

A\.7 External Interface Diagram. A-2 T

A.8 High Level Actor Object Identification A-30

IA.9 Organized Preliminary Object List. (
A.l10 Message Senders and Receivers -:2

A. 11I Documentation of Object Classes. A-3 I

3Bibliography. IB-1

VitIa V A- 1

I List of Figures

3 ~F i gure ag

2.1. OOD Graphical Interface Diagrams ("Booch Blobs").

I2.2. Data Flow Diagram....-

2.3. State Transition Diagram....

2. 1. Entity Relationship Diagram (ERD) 1

2 2. 7. Concept Map of "Concept Maps .

2.6. Object Diagram of a Sch-edule Organizer.. 2

2.7. Coad's Object-Oriented Framework..))

2.,S Slilaer and Mellor's Information Model.. 2

:3. t. Relationship of Objects and Algorithms- 125:3 .2. Concept Map: Cruise Control System 3- 1 9

:J3:3. Concept Mrap: Cruise Control Buttons...-

3 :. 1. Cruise Control Story Board: Initial Setting- 2 1

53.5. Cruise Control Story Board: On Button Pressed

3.6G. Cruise Control Story Board: Set Button Pressedl.

1:3.7. Cruise C"ontrol Story Board: Brake Pressed...

3 Cruise Control Story Board: Speed Drops...

if:3.9. Ilxferral Interface Diagram...

:I 10. Crlwis Control: Structure Diagramn.. 3:30

3. 1 1 . C Uiie Control: Interface Diagram. 3-31I13. 1 2. ('in se C ontrol: St ate Transi tion Diagram. : :12

:3.13. hiitt)iI: '.tructure Diagramn..-

3. 1 1. Bllt1oti: Interface Diagram .3 3)

3.I 7. Spvced:)t ruct nre Iiagramn.- 7

IV

PiI Fiure

3. 1(;. Speed: Interface Diagram-

1 3.17. Speed: State Transition Diagram.)

IL.I. Concept Map: OOA Method... 1

4.2. Concept Map: Capturing the Roquirements...

-14.3. Concept Map: The Unstructured Concept Map

1. 1. C'oncept Map: The Event/Response List 1-6

L.iJ. Concept Map: Structuring tile Requiiremnents.- 7

3 lA. Concept Mlap: The Object Encyclopedia. I -

-. 7. 0OA TFool Storyboard: Main Tool 1-12

1 .S. OGA Tool Storyboard: Capture Requirements Menii.. 113

1.9. OOA Tool Storyboard: TextUal Information- 11

1. II). OGA Tool Storyboard: Concept Maps.- 1)

1.11. 0 0A Tool StorYboard: Storyboard Window I- I()

-1.12. 00A Tool Storvboard: Event/Response List- 17

3.1.1. 00A\ Tool Storyboard: Structure Requirements Menu 11

1.14. ()Q;A Tool Storyboard: External Interface Diagram

1 1 .7. 00 N Th,,l Storyboard: IEghi-Level AlIgorithm-, Decomposi.tion .2

1. 16. 00A\ Tool Storyboard: Potential Object List...

;. ! 1. ()0.\ 1 !) ' toryboard: Message Senders/Receivers

I IS1 ~. (00A Tool Storyboard: Object FEncyclopedia. 2 I

I 1). 00A\ln Storyboardt: St md lire [)ihagram-

5 I .2f 00\Tool Storvboard: Interface lDiag ra..

T,2! 00 ol Storyboard: I Iligil ighIng In1cominv . .e. . .e . 2

3 I 222. 00 (I Io -St orvboa rd:)t ate Tranusition Di agram..-2

~I - Snhied ilu ; .;nl C orprol lie1vat or: l(vat or Mmsent a I Noe

Stor ard l~iplav Reqiu'o

53.3. C ontrol Elevator 13

£ .I. SlIe(d u le Elevator . ., .1

3A. 1. Overall Elevator Control Syst em A-

A\.2. Scheduling Algorithm

3 .3. L'leva or Components. A- I

A\. . El1evator Motor.

A \.5. [levat o[Flour Sensors. Ai

3A.G. Elevat or Control Panel....

A. 7. Ele cva tor1 Location Panel....

3A.S. Elevator \eight Sensor

A E. leva tor Requiest Panel.....

3A. I ttStorv Board: Idle Elevators 12

A\. t1 S.tory Board: Up Request from Floor 3. A- 1:1

IA. 12.Story Board: Elevator Arrives at. Flcor 2. I

A.13.,Sto r., Board: Elevator Arrives at Floor :3.

A*\ 1 I Storv Board: Passenger Presses Destination Button I(:

3 1 -5.Storv Boa rd: More Summons R~equest's.. A-

A. .1 YI ()rv Board: Elevator Arrives at Floor .3...

I S\ t 0 FYSo Board: Elevator Overload Pi

A.I .to orv board: Elevator Loaud Lighteiwd ..

3 .\ . I 1)S t orv Board: Elevator P~asses Floor 6~

5.\ .2().)t orv- B oard: Elevator A\rrives at Floor 22 2.

;\.21 ..5?orv% Boa rd: Elevator .'\riv at [lomt :36.. \ .)

3 .\ ~.2-2.1'.1eva r ('on trol SvSt em l Vxternal I nt erface Di a grain.

\ 2 e atr (ontrol Systemn: St riictulre liaffrarln. 3

3 .\.21.1Elevattor C'ontrol Svstnnn: Interface Diagram.l..

.\.2lie- atvor ('ontrol Sysem Sate Transit iou lDia(graru.........V A(I

I>

I I re

3 ,re I',_/

A\.2(;.V7 d ,r: Structure Diagram . A-t.',

I ."'%- Eevator: Interface Diagram \ -P
A.2 .Fle\'ator: State Transi i)iatranon D.............. \

k.29.\(ontrol Panel: Structure Dialgram\-

. . Co i~t rl Panel: Interface Diagral -',1

.\.31.('ontrol Panel: State Transition l)iagraii.\ 1

3 .\.32.\Addrss: Structure Diagram.. -

.\.3:,..\l resI: Interface Diagram.

.\.34.A Flss: State Transitiom Diagram..\ .

.\.3..l)ir(tion: Structtire Diagram

3i.l)ire il: Interface Diagram .

3 .\. 7.Di rct ri: State Transition Diagram\ -

A.3.Feva or ID: Structure Diagram

.\.39 .Flevator ID: Interface D)iagrartn...l\

.\.tin.i 'valor ID: State Transition i)iagrai......\ .

I \. 1 l.levator Motor: Structure l)iagram

\. '2.1'hxar Motor: Interface Diagram..\-;

A .l.l'Fe'v;t or Motor: State Transition [)ia.gram\-; I

A .. tI 1.1"I"r Nm er: Structure l)iaarar A-6

\. -,.t" or N m her: Interface jiagraln\- i3

3 .\ I i'" r N w i er: Stat lrarlvitilo Diagrarm A-(;

.\. I- H, , or: -Str ,ture l)ia-rair A-

A .\. 'J.1"1,),,i q' -,, r: '-*tat(, l rr rm liti,,n .rH \ k- G T

I .\. 'l.l ,-' t'r: Ir'ie rfa ,, l)ii riu A-W)

.\.r" -r.ll p' N IITIIWI. : St 1 1 11 C li

I
I

I

.\..53.It t t .Num.er: Intrface)iagrart -71

A.\.5. [rltrrulp Number: State Transition [)iagram -72

.\.55.Iist: Structure Diagram T

.. T6.list: Interface Diagram . T

.\.57.List: State Transition Diagram -T

.5 .Location Panel: Structure Diagram \-7",

3 .\..M!).Location Panel: Interface Diagram -7,

.\.60.Locat iot Panel: State Transition Diagram -9

I .(,I.Oiutput Register: Structure Diagram. \-

.\,.62.Out put Register: Interface Diagram. -I

A.63.Sirnmuons Request: itructure Diagram A-3

3 .\.61 S.urnmons Request: Interface Diagram \

-\ .65.S iummons Request: State Transition Diagram -1

i A.66.\eight: Structure Diagram

A. 37.W eight: Interface Diagram -

I A.68.Weight Sensor: Structure Diagram

A.W iht Sensor: Interface Diagrain

.\.70.\Veight Sensor: State Transition l)iagram A

X
I
I
I
U
U

i <1

I

I
I

List of Tables

I T~able ',

.-\ .1. h'Llvator Control System Interrupt Numbers \-2

A.2. Elevator Controi System Register -\ddresse>A 2",

\ 3. Lievator Motor Control \Word Format- 29

I
I
I
I
I
I

I
I
I
I
I

xiiI

A Abs t IYL ct

5 (U a 0')*ec -Or (:,e,(at De O 0D has become a, pon m aa r.c, <-

X7,m nt v Ad-a. One, of he difficulties in applying O()D is that the mr

*navaliable -o ,e de thze t le c of requiremnents anaiv.sS is tvupical':

Drs~ituii a u rrn inappro priate to QOD. Traditional requjirements allaIVSlsnuui.

3e.data fla)w (diagrams) organize the software requirements based 11nonl t:"e i(u:

iote svstem must perform. Recent reso-:rc F(; ugzgests that. an oF-)'%I

I anaroacn to requirements analvsis 'is a mnore natiiral lead-in to 00)D.

5 ~ ~T'e o tis tflesis \Va< co) r:: the tools. stn.andhel h

ooec -rtneeanl si'00Ak rethiod of modeling softwxare requirem-ents. FTe

3 cao (:e 01 toois used t.o capture, tite reqjuirements mnakes the miet hiDatc:ar

saaefor use wh-eni deveiopin,. embedded systems. The method emnphasizes -,o111-

3 tnnilatxo wih bothi thle domain expert, and the desligner.

T he 00.- method consists of two Tphases. The objective of tile hrphase o

I ~cap)ture the software requirements usmng uflst uC'ured tools suchi as conIcept map

3t~Iors and alist of external events to which the sse utrsoi.T

seodphase inovsstructuringr these requirements inoa moode basedi upo)n the

5 ota'are objects.

The thesis also adoiressed thle possibility of automnated support, for thei OQA

U met hlo I. and proposes ain OQA tuo(l to assist thle analvst. T he OQA me't, ho, l was

K' e(o a sam-ple r~inents anaivsls probieniTl to u7;wit aete e ~V

XII

I AN OBJECT ORIENTED ANALYSIS METHOD

FOR Ada AND EMBEDDED SYSTEMS

1. [Introduction

The olbject-oriented approach to software development is eneits adloles-

cenice. Discussions about the object-oriented paradigm now routinelY appear- lu thew

computing literature, as practitioners recognize its potential henefits in develop-

ing reliable, maintainable software. This thesis examines the application of object-

3 oriented techniques during the requirements analysis phase of software dlevelopijiei.

1. 1 Background

I In the 19T0s. the Department of Defense (DoD) experienced first-hand the

symptorns of the software crisis: unpredictable development costs andl schedules.

poor software reliability, costly maintenance, and dleliveredl software failingT to Iiect3thle needs of the user [Booch. 198:3:6-71. As one step towardl resolving this pi(' 1a-

inent. the DoD sponsored the design of a new programming langunage. Ada. to hi,

3 used. for the developmc-nt of embedded systems applications for tHie milit ary. Ilic

A\da langumage iincludes features (e.g. strong typing, packages. andl tasks) whichi aid

U software engineers in managing the complexity of large Software sNvStemIS.

The avai labili tv of these mnodern language conuctS inI A\d(areiirIsitW

I ii ~(Iujnvvr ; to formunlate new met Imods to tiilize them. R ussell \bo Abbott . I >83

;11f(;ratdy. Hoochi [fRooch . 19831 i ntrodu ced tHie use of obj'ect -orienit ('(tv(cliiri i(P 1 sI ~ ~I leanls Of a pplvi ng the new featutres of A*da to conihl aIso IF!ware complex it . -113 ~ ' t uurt ire of soft ware developed wit hi ami object -orient I e a pproach is pat t ermo(I4 on

I i ohjrc/. evidlent, in the real- world p~rob~lemn. A designer creates software emitic tk)

I
I

itnplerlent I iese objects. The resulting similarity between t tie st ruct ire of the Il)r,,-

3 lenm and that of the solution tends to produce a more natural design than a de.sifgil

mappedl only into the predefined data and control structures of a typical program-

3 wing languiage. The object-oriented approach to software development is unique iII

its ability to support the principles of abstraction, information hiding, and iod,-

I ularity [Pressman, 1987:334] which lead to more understandable and maintainable

soft ware.

This original Object-Oriented Design (OOD) method called for the develp-

I ucnt of a textual informal strategy of the solution to be used as the follndat iol for

the design phase. From this informal strategy, the designer identified the rcl v;iili

objects and operations required for the solution of the problemn. Unfortunately. uiel-

ther Abbott nor Booch gave much guidance for writing the informal stratei5y. In

3 practice, the typical result is a vague, unstructured paragraph which serves as a frail

basis for the design.

I Recent research suggests the use of object-oriented techniques in the earlier

I phase of requirements analysis provides a more coherent approach to object-oriented

development [Pressman, 1987, EVB, 1989., Ladden, 1989]. A complete life cycle

3 object-oriented methodology provides a stronger framework for the applicatiort of

Ada in the management of software complexitv.

3 A recent thesis by Capt Patrick Barnes [Barnes, 1988)] proposed an lject

O()iented Design methodology based on the concepts of decision Sli)port s' telilS.

I I Ia rues suiggests that a graphical concept map may be a belter means of (lescril)-

iig Ile solution strategy than]ooch's informal strategy method [Barnes. i 3-v

a 1d reconimends research into the use of concept maps in tlie requ irements ph1ii,3 Ibis.t liesis fu~rther explores the idea of using graphical o1ect-orienled tools iM I l .

[('(qlir ict is analysis phase as a silstwi e for the textual uuforinal strate'.

I
I

1-2

I

I
I

1.2 Problem Definition

SThe objective of this thesis is to develop an Object Oriented Analysis (00A)

method to model software requirements. This analysis method will provideguideliues

for identifying the objects in the problem space, their attributes. and the relation-

ships among the objects. The specific objectives of this thesis are to

5 a. Determine the requirements of an OOA method.

b. Define the steps of an OOA method to represent the problem space.

5 c. Identify the requirements for a software tool to assist an analyst in
applying the OOA method.

d. Validate the OOA method by applying it to a sample requirements
analysis problem.

I 1.3 Scope

3 The requirements analysis method developed in this thesis assumes that the

analyst has expended prior effort in defining the overall systrm requirements. There-

fore. the method considers only the software component of a larger system. The

method also ignores the analysis of factors such as cost, effort. schedule. or test in:

3 only the behavioral requirements of the software are addressed.

The method concentrates mainly on the analysis, rather than the deternmlila-

fion. of requirements. In other words, the method assumes that the user has imade

3 an effort to idcntify the needs of the system, and concentrates on capturing and

documrening these requirements in a model which forms teie basis for the softwar

I (esign phase. III reality, it is often difficult to separate requirements deterninat ion

ard analysis into distinct phases. Therefore, the techniques of any analysis met1lie',I

3 iiiav have to he applied iterativelv uintil a satisfactory set of reIiiremeuitl s can I, ,t,'-

(iiied. H owever. tools such as rapid prototyping, which are helpffi for r<q ir t iu 1

3 ,lett,111inatioii. are not. specifically included in the OOA i'I hod. The esh)f'it h

I
1-3)U

I
I

OOA method is a model of the system which can be understood bv both the user

3 and the designer.

Since Ada was originally developed to program embedded systems, the 00AImethod will concentrate on this arena as well. These systems seem well suited to

3 obje t-orienited design, with concrete physical objects that require modelling in soft-

ware. Embedded systems also tend to have requirements that can be identified early

in the life cycle, with a fairly well defined hardware/seftware interface. Althogh

the OOA method is aimed primarily towards embedded systems, many of the coil-

1 cepts presented here apply as well to general software development. However, the

method provides only limited support for identifying reusable objects or potent iallv

3 concurrent objects and operations.

During the development of the OOA method, consideration was given to tlie

complexities associated with specifying large software systems. As the complexity

3 and size of the software increases, it becomes important to view the software from

various levels of abstraction. The OOA method therefore should support the layering

5of objects into hierarchical levels of abstraction.

The method assumes that object-oriented techniques will be used in the de-

3 sign phase. and that Ada will be the implementation language. Ada is not a 'I rue..

object-oriented language in that it doesn't fully support concepts such as inheritallic

and(dynamic binding; however, Ada can still support a form of object. orientel pro-

,,graning. The OOA method addresses object oriented concepts as Ada suIp)mrts

theni. Given these restrictions, the analvst can use the OOA met hod in combinal i011

3 with OOD when the implementation language is one that supports data encapsuila-

tion and information hiding, such as Ada or Modula-2.

I-' .Ipproali atid Olcrri(

3 "lhis research project consisted of four phases:

I
1-1I

I
I

1. An investigation of current analysis techniques.

3 2. Formation of the tools and steps of the OOA method.

3. Description of an OOA tool to assist the analyst.

I4. Validation of the method.

These phases were somewhat overlapping. Examining current analysis tech-

niques prompted new ideas about the requirements and design of the OOA rn-t LW.

Also. the process of developing the OOA method naturally identified many of the

requirements for the corresponding tool.

J1.ei. erieU, of Current Analysis Techniques. The first step in formulatilig

the OOA method was a review of the literature to identifv the current state of

practice. Since at the outset of this project little research had been accomplished ill

5the application of object-oriented techniques to software requirements analysis. the

review covered a number of topics surrounding the issue. The first subject was the

3 application of object-oriented techniques during the later phase of software design.

The second area addressed was the software definition phase. This examination

I identified the information captured during requirements analysis, and the major

tools and approaches used to capture this information. Finally, the review considered!

the attempts that have been made in applying the object-oriented paradigm to th,

5 (,filnition phase. Chapter II of this thesis discusses the results of this literaltire

review.

1..1.2 OOA Method Der lopment. The requirements for the object-oriell (',

3 analvsis method were based on the information gathered during the literature review.

Ihec review of the OOD process identified the informal ion needed in the requirement s

I model to successfully apply object-oriented design. The specific tools and steps of

lhe OOA met hod were then developed from these requirements. The re;iirei inelw

3 for. and steps of. the OOA method are described in Chapter Ill.

I
1 -5I

I
I

A good deal of creativity was required to conceive the steps of the OO,\ met hod.

3 A promising starting point was to first conceive the end components of the object-

oriented mode! of the software requirements. These model components were selected

to represent all of the information required for an object-oriented design. Another

factor influencing the tool selection was the need to define a model which could be

I easily understood by both the users and developers of the software.

\Vith this end result defined, attention was then directed toward identifying the

steps and heuristics that go into developing the model components. These guideline>

3 were defined in sufficient detail to enable an analyst to identify the objects and

operations of the problem at various levels of abstraction.I
1.4.3 Requirements for an 00.A Tool. As the steps and tools of the OOA

method were defined, consideration was given to their automated support. Par-

ticular attention was given to ,ie representations, operations, memory aids. and

3 control aids (OMC-see [Sprague and Carlson, 1982)) of a tool to support the OO.\

method. Concept maps identified the elements of the OOA method and the relationl-

3 ship between the method steps. Once the potential support areas were identified.

the proposed OOA tool was described through story boards. The description of an

object-oriented analysis tool is outlined in Chapter IV.

I .4. / .cthod Validation. The concepts defined in OOA method were vali-

dated throuigh application of the method on a sample problem. The prob lemi se-

lected to validate the method needed to be of sufficient size and complexity to giv a

i reasonalble denonstration of the method, yet small enough to handle in an aca hemiC

'ivirolnrneit. The classic "elevator problem" was chosen for the task of evaluat in

I l0e metiod. This problem, originally used in a. workshop sponsored by the .\sso-

,iation of ('omputing Machinery (ACM) [Yourdon, 19R9:631]. calls for the anal si

3 of the software re(Iiirements for an elevator control system for a building with I'iiu

,lf'vators serving 10 floors.I
l-6I

I
I

The tools and guidelines of the OOA method were applied to analyze and

Imodel the software requirements for the elevator control system. The results of this

exercise were compared against the method goals identified in section 3.1. Also,

I since the elevator problem has been previously analyzed using different requirements

analysis methodologies, the application of the OOA method on this same problem

enabled a comparison to be made between the OOA method and previous, function

5 ljased analysis methods. The results of this evaluation are described in Chapter V.

1.5 .llarinun Expected Gain

The result of this research is a method defining the steps needed to model the

problem space in an object oriented manner. This model provides a more straight-

forward lead-in to Object-Oriented Design than current function-based tools such

as data flow diagrams, thus enabling a better object-oriented design. The method

also provides the analyst with more guideline, and structure than the informal strat-

egy of Booch [Booch, 1983] and Abbott [Abbott, 19831, while still retaining a more

unstructured communication with the domain experts.

A more straightforward method of applying object oriented techniques in the

3 software analysis phase should result in wider research and application of the object-

oriented paradigm. Additionally, the OOA method and tool could be used to support

5 instruction : requirements analysis, OOD, and the proper use of Ada constructs.

5 1.6 Srquencc of Presentation

The chapters of this thesis follow the phases of research identified in the l/)-

proach and Orerview section. Chapter II lays the foundation with a review of Iec

current literati ire in the broad areas of requirements analvsiz and the object-oriented

paradigm. Chapter 11 identifies the requirements. !ools. and steps of the Object-

3 Oriented \nalvsis met hod. Chapter I V provides an o itline for a tool to supl),

the analyst in applying the OOA method. ('hapter \ provides an evaut iaion of he4

1-7U

method 1y applying it to a sample requirements analysis problem. Finally. Chap-
I ter VI identifies conclusions gathered from this research and recommendations for

i further study.

I
I
U

I
I
!
I
I
I

"I

!3
I
I
I

U I. Literature Survey

3 ihe growing number of art'cles, books. and object-oriented languages in recent

years implies that the object -oriented paradligm is more popular than ever. The trend

in the literature also suggests an expansion of the paradligm from the coding anld

desiningactivities into the earlier activity of reurmnsalyi.Ts hpl,

begins by discussing the application of object-oriented techniques during thle design11iphase. It then reviews popular approaches to requirements analysis in oif-,,I to

identify the tools and met hods used in capturing software requirements. The chapter

clIos es with a discussion of recent attempts to apply object -orient ed techniques(" to

reqJuiremients analysis.

2.1 1 Oft-Orientrd Techrziques in the Design Phase

3 One of the perceived benefits of the object-oriented paradigm is its applicati oll

of modern software engineering principles to deal with the complexity of large pioh-

3 ,is. The result is, a more natural mapping lbetween the real world probl emi l Ihe

problemn space") anld the solution represented by the software.

Other popular design methods tend to carve the architecture of software ,Ys-

3 'nis alonig either funcfinnal or data-strtici tire 11ies [Hooch. 1 987b::37] These inothI-

(I-; %wrk fine when used with oldler languages whose primary st ructurn -ehl'sl

r i proceduire. However, these mnethods fail to ut ilize thle strtuctumirinrg ca pah" Ill Wi

o~f newer aj ai uages. such as thle Ada package constriict or thle object st nicti- r0I,

3 S~mnalltalk I. hat, aid in the management of compllexity Hoh 8h37 rsnam

iiimarize le promiiisi ng aspects of object -orienited dhesi gn (001)):

'IIle 1miiiilme riature of 01) et -oriento dr (esign lies III Its abilit v to bild1(
l ii t lre(' Iport ant softwaire desigii conicepts: a bst racn ion. infOrmiia t ionl

h*l, n mol~Uaritv. Atll g mehd tiefr otaeta x

orocompromfise. [Pressman. N987:331]

T1his sect ion wvill define anl object model !o be used throughout the reinal irl

of thle thesis. and] port ray object-oriented design (OOD) as it applies to progranili a

in Adtia.

21 1 hjct A/odrd. Ani object -oriented iperspect lye views t lie world InI I

fot~ject s and behaviors. Work is accomplished wheni an object seiids a nii-O;:'

to a not her oki)ect, asking It to perform sorrie lbehavit r. Eaclh oh ect miaiii!lj

I s~oum state iniformat ion which mayv be uipda ted xwhlen a ii object performsl e

~Bamie. 1S~:. 1].The state of higher level composite objects caii bev (le'crihj), Ij'

U cris of lie state of each of 'its coilI poneiit Objects.

3 Fte definitions, Of termls suIch as,' object anid behavior differ somiewhiat a~ 1

auit hors . lTere seems to be thliree major reasoi for t he di ffereiice,: th1c

of, uise I imforiinat ion systems vs emnbedded systems), thle piirjpose of the dIisc'v-< a.

practical v> teoretical), and lie Sup~port of lie langulage used to im1plement I,

C(Q)icelpt S.

lIn anl cuibedded svstems viewv of 00 D, lhe objcts comeI pri ilia IllY fi 11w

I liv-acal cntles of thle problem. Most objects miodel thle state of each of liese pl"i

aen t it i-c,. ()t 1er types of systemns takea more liberal view)f am ol ect. Iiif)rtii.~tItl

-\%-tl'tii5offeIl exp~andl the view of an olbject tocentail relationsiips beli een dktla

ide1ntified xvhet lie data iw, iml Is normialized. Slilaer and Mcelor include inI Ilii tl

It dei iIt1 o i an Y a bs tra ct conricrp t I Ii thI e realI world ([S Iilaevr and (N IcIlor, I (I\~~

lu1c". L,(-, faIr as to idenitifv dliffereint types of ob~jects:

U~~ ~ * .\Lt ract ions of tan il //It. fiomi thle reai xworldl.

6 l\1ist ralCt ion1s Of SP(c if cntion u oi- qua/i! critf 1,10.

* (n/hcdin u or aggrrya Itions of* angIic Yt('ems.

e .Sirt 1p- ili the execution1 of a proces's.

1i olhject miodlel (defi ned bv Brallirk [Bralick. I 988 1 provides a more t heoret ira I

3 f~oiitla tioi for the parai gm. H owever, Barnes identifies two weaknesses in ll i

11iS1. Mtodel Iii idesivii. First. it lacks an explicit mnet 110(of dIescrib~ing the inlerilc-

3 o 0 c1 . econd. the models, flexibility In represent lg entities makes- it o1

'P ov Oide a des igner with a clear pathI for design [Barnes. 1 9,10:2.2

I I~t ~ll Ii1111)1 all 01) ect 1110' !vI aiil a(t 1he (li'sigT1 phlise' based on t ilie w') i ,.%

H;ll(o mdl it more restrictive model hased on Sinalitalk bJJects.

Pr'-eiited here is the ob~ject model (levelopecl bY fiares . Since tile enipisil>

hl: is 1 i t'-)ward object-orient ed concepts as applied towardl I lie :\lanaioime.

!t to'mi fjii"1 ls() iclidC' chlaracteristics of oh.jects Int roduicedl liv (radl 13 1 0,h

1;,((h PiNI; Xh1o apidth (obiect-o(ricute(I paradligll to dIfIVlopmntn with] A.

I 1?he. e~ ' es ip inswill provirie a b~asis, for 7; nt kilng the linformation 11i

!1,1j-11w ce aptlinred u(hring repIiii-e liie:lts lay is

I I,1,1I.1 A i (Thf ci AMd(/ for LX SO/Ti. Barines' 0o)ject mod)(el Ill' r,c

1 Lv o'j1 hY classes ofl 01) jec s, operatjins, attIrdibItes. and relat 1111 iiip

A l a' 11111i4f clt t (' Ii II

1 0 .\m nuicllJ is a, iiietit ;md fdiims i chi 1v wtnhii \liicI)I)-

II-,I . trli Ojec ad opration,.s Reliili d5((ttr i wt are lil 01

(011l1)(MOeT" a ,r. ai server,.U~A 6 .i]IIti'Ibuii idertlte ill~ an oject (or ~peri'tii

* A\i I a "'ri relpresenTs ail aissOCNmat (;oill a ohicccI mn)eriltm wit I

;lw %- em o jc l.)1 rit~oi'.(r e22 ~ q

e .\it operation is the dlescriptioni of how an object performs Somec
h eliavior. Required attributes are tnme and algorithm. Relations
includle sets of actors, servers, argumients. and mod'fied objectIS.

* A class is a complete design of anl object which may be uisedl as aU template from which other ob~jcts dlerive their characteristic strurc-
ture and function. [Barnes, 1988:3.11

lit is nio el, Barnes dist ingiiishes bet ween the terms -behavior- and "opera-

Irr lol" e defines a behavior as at more informal description of an object's funct ioinal-

ity lin response to a stimulus from another object, while an operation is a more formal

set of algorithmis definnrg how the behavior is performed jBarnies. 1 988 :2.21lJ. 13a rites

also identifies the relationships between objects by classi fying ob~jects as actors or

setvers, depending on the direction the message is passed [Barnes. t988:2.95, .3 This object. model serves as a foundation for the characteristics of an object.

More specific aspects of the paradigm as Implemented by Ada are considered bY3 iii rCInd ing lie defini tions used by Booch.

2. 1.1.2 Booch *s Char'acthristics of azz Obfrct. Booch rlefinies alloltfc

it ,eneral termis as --an entity whose behavior is characterized bv the act ions Ilt it

3 ~,t fers and that it requires of other objects" [Booch. 19863:21 1]. lle goes on) to proid,

IttOre dit alled anialysis of art ob~ject's characteristics.

pmit I 1111, Ti aleIcuhe sta-teof an%, sub)-objects contained ili t lieohrb c

I i~ (pilol Aioci 01)25] For xan le b he state offa windowing

3:!I 11de th It4ate of each winldow runnTing11 inl tilh, environmnrt

IC/iton 71(1 ki s .it object may' reqirell(operaltons front 'It-

() it mitv serve t he requests ol othlei' olects. These olp'rat ions ()n ainOijr

3 x 111fuli1vY or exainle the ,tatel of f ie object. lBooeli idenitifes, liree cla' st- 4,1

''Vt; A~. '!./I~r~rj~ratjotsitoditv ie(stalteof an[oblert. . f h(r/HorCV; it>

cxai ine the cnrirent state of an object. It ra toroperations Visit all S1 b- COTn poritI(H

An object may be classifiedi by the way It relates to othter objects. Ac toro01) jer

operate oti ot hers but are not operated on. .Scri'ur objects are operated on by oi hcrs.

bu1t never inict operations on others. .49c at objects perform some ope-At ioU 011

bchalf of 01 her objects. An agent, is 1)01 h t Fe receiver anel initiator of operat !ut is

I Rooch. [98 6:216].

3C(lasses of Objccts . A class is a set of uniquie objects that siarc

the same characteristics. Each object in the class has the same set of operat ioii' as<

3 other objects in the class. A class is characterized by a set Of ValuePs. an~d a SeI Of

)perat ions app)licable to objects of that class [Booch. I 987a:21]. A system may p)<

3 sess a hierarchyv of classes, where a inctarlass defines a set of classes: hiowever,. .\h;i*

-'lppjort for implementing this hierarch%, is somewhat limited. [Booch. 1986:216]l.

Object Vanics. Names are used to identify objects. Each oh-

ject has at least one name. and could be referred to by multiple names (aliass

llooch. 198'6:2161.

V isibility of Ob)jccts. Objects shiould be restricted inI their visi lii -

3 liv. Ii nat hey mnay collaborate on lv with ot her objects that are logically re jiii red

I o i mpleinent! its d (esign. I Tnrestricted visibhilityv allows a ny object to operate (on a iv

I Oilier object. Limiting the visibility makes the systemi more tinderstarvlahle anld

Vlic us of U)Jr ct.S A n object miay be viewed from tIwo (I1i r il

U 1)isj)(rt ives.: iiiiele or outside thei object. IThee olitside viewv represent S I hod ahb I 1;c

ha1iv I(,r of ; I ohjec t -its interl'ac wit)? he Vest of the wordo. lThe InIsife view r\,~U ~ ~ ~~~ 1h 11is fhwteoject and it., operat ions are itnpleniented Aliooch. 19"6t:217

g ~ ~ I led)*jft., 4)[l1 "v the 0111sidl ewd' of aii of)jc ('(

I
I

2.1.1.3 Summary. Together, Barnes' object model for design and Booch-.

characteristics of an object define a frainewerk for an Ada view of the object-oriented

paradigm. This model also serves as a starting point for identifying the information

that mu.st be captured during software requirements analysis. The next section dis-

cusses the object-oriented design method proposed for Ada 1y Grady Booch.

2.1.2 Oject-Oriented Design (OOD). The foundations of app'ying the ol)cc -

oriented paradigm to the design phase date back at least as far as Parnas' discus-

sion of information hiding [Parnas, 1972]. However, it wasn't until the develop-

ment of Ada and object oriented languages that interest mounted in applying tihe3 paradigmA in the design phase. All languages are object-oriented to some degre'

[EVB. 1985, Bralick, 1988:2.2]. However, it is a language's support for data abst.aC-

tion, information hiding, and to a lesser extent dynamic binding and inheritance

that makes it suitable for object-oriented programming [Pascoe. 1986:110]. Although

\da is weak in the areas of dynamic binding and inheritance [Pascoe, 1986:142], it

strongly supports the concepts of abstraction and information hiding. making it

suitable for implementing an object-oriented design [Booch. 1986:216].

I 2.1.2.1 Booch's Object-Oriented Design .1hthod. The version of object-

orielitcd design (GOD) made popular by Grady Booch [Booch. 1983] relies on the3 research of Russell Abbott. Abbott's approach to software design began wilh the
development of a textual "informal strategy" [Abbott. 198:1]. Booth applied thlis

I approach in an object-oriented framework to develop his initial version of O1).

3 "'Traditional'" OOD. Booch's initial version of OOD involved t h,

fllowiug, steps [Booch. 1983,. EVB, 1985, Pressman. 1987]:I
S1) Df lin(the problem. The use of analysis tools is appropriate at this

point to define the probleT space [Booch. 19 3:11]. Some ad ocates

I
2- I!

recommend stating the underlying problem in a singie. grarnmati-
cally correct sentence [EVB, 1985, Pressman, 1987].

2) Develop an Informal Strategy. English prose is used to define a solu-
tion using the terms of the problem space (Booch, 1983:42]. This in-

formal strategy specifies the relationships among objects that make
up the solution [EVB, 1985:1.4].

:3) Formalize the Strategy. This step involves four sub-steps. First
objects and their attributes are identified from the nouns and noun
phrases in the informal strategy. Next, operations on the objects areI dentified from the verbs and verb phrases in the informal strategy.
Third. interfaces between objects are established, and expressed in
a graphical notation (see the example in figure 2.1). Finally, the
operations are implemented, potentially applying the OOD process
recursively on the operations. [Booch, 1983:12-13]I

Booch and his followers have since modified their approach somewhat, resulting

in less of a dependence on an informal strategy to identify objects and operations.

£ "Contemporary" OOD. The steps in this "contemporary" ap-

I proach to OOD are listed below [Bech, 1986, Bech, 1987a, Bech, 1987b]:

I) Jlntify the objects and their attributes. Although nouns used to
describe the problem space are mentioned as a possible guideline to

identifying objects, no mention is made of developing an informal5 strategy[Booch, 1987b:481.

2) lntify the operations. This step characterizes the behavior of each
object or class by identifying the operations that affect each object

or class and the operations that each must initiate [Booch. 1987b:148-

19].

I 3 ').Stablish the risibility of rach object. The static visibility of each
olb)ject is defined in relation to other objects in the svst em. lusirig
tle graphical notation identitied earlier [ooch. 19871h:,19].

I .. /(b/is/ the in,1trifac of (ach object. The interface of each object
or class is specified iising some suitable notation, such as an Ada

pakage specification. This interface is the view of the object or

:lass to ot her objects in t lie software syst em [1oo,'h. 1987h: 19].

I
.I

Tree-TypeCotint-Leaves-On-

Get-TitialBinarv-Tree

Coiinter-Packaf e

Pile Pac ageCoiinter
Tv e

C= Display

I nc remien t

1-Pirr 2. 1. 0) G raph ical Interface Diagrams ("Hooch BlIobs) [Booc hi! 19S.3:7.7

2-8

I
I

5) Inplement each object. Each object is implemented using a
suitable language feature. The object may be further decom-
posed by recursively reapplying the OOD process, or composed
in a bottom-up fashion from existing lower-level objects or classes
[Booch, 1987b:49].

This version of OOD minimizes the emphasis on the informal strategy and.

instead, emphasizes the use of traditional analysis tools to define the prohlem

[Booch. 1986. Booch, 1987b, Booch, 1987a:471. Ladden summarizes reasons for the

shift away from the informal strategy approach to OOD:I
The viability of the well-known technique of developing an -informal
strategy' by creating a narrative description of the problem, and then
selecting the objects, operations and attributes of the system from the
nouns, verbs, adjectives, and adverbs of this narrative description is
questioned. It inherently lacks rigor due to the impreciseness of the
English language; the approach appears to have been disregarded by
its originator; and its suitability for large projects has been criticized.
[Ladden, 1989:87]

Object-Oriented Design as known today is not a full life cycle method

[Booch. 1986:84]. OOD assumes that the problem space has been previously defitled

I aii(organized using some form of analysis tools. Two approaches to this analysis

are possible. A traditional analysis method may be applied to the problem and ilwil

translated into an object-oriented representation. An alternative is to use object-

oriented techniques throughout the life cycle [EVI3, 198q:15], Both approaches will

be consiiered in the last. section of this chapter.

:V defined in chapter 1. the primary goal of this tiesis is to develop an object-

oriented approach to the analysis phase. This object-oriented requirements analysis

(Ol.A) activity will precede the OOD process to achieve a more cornpletc]I['(

ccl,, rel hodology. The development of this Object-Oriented Requirements :\ nalvsi

I hInethod a&5ssrles than an object-oriented approach similar to tlie "conte o ptraivY"

001) apf roach will be iised (luring the design phase.

2-9

I

2.2h I e Dfiition Phase

As mentioned at the outset of this chapter, the object-oriented paradigm seems

to be working its way backward in the life cycle. Whereas object-oriented techniques

have been practiced in the development phase for nearly a decade (an eon in the

rapidly advancing computer field!), application of the paradigm in the requirements

analysis phase is a much more recent phenomenon. This section identifies current

approaches to delineating requirements for software systems, presenting a menu of

alternative representations on which an object-oriented approach may be based.

2.2.1 Software Requirements Analysis. The IEEE defines requirements

analvsis as "the process of studying user needs to arrive at a definition of system or

software requirements" [IEEE, 1983:30]. Software requirements analysis is therefore

i concerned with studying user needs to be able to define software requirements.
\alusek makes a useful distinction between requirements analysis and require-

mcnts determination. Requirements determination is a user-oriented process of de-

I veloping a list of candidate requirements. Requirements analysis is the later process

of focusing and reconciling these possibly conflicting requirements. and detailing

3 them in a specification [Valusek and Fryback, 1987:1.47].

Land identifies four common techniques of identifying requirements. -\u ana-

lVst may interview users, carry out surveys, observe the or organization i1

operation, or study documentation of the current system [Land. et al.. 1987:20S,].

I lPrototyping can also be included in this incomplete list of met hods used to idelm ifv

l I requirements of a software system [Gomaa and Scott. 1981].

The oltplt of the software requirements analysis activitv is a model of Ih

3 lproblem space. This model serves a nniimber of purposes. The model

spe sJ cifies the logical requiirenietits without detailing a physical in-
pleumentation [(;ane and Sarson. 1982:9].

2-10!

I
I

* expresses preferences and trade-offs of potential approaches3 [Gane and Sarson, 1982:9].

e focuses attention on important features of the system while de-
emphasizing less important features [Yourdon, 1989:65].U presents a basis for discussion with the user about changes or cor-
rections to the system [Yourdon, 1989:65].

e verifies that the analyst correctly understands the user's problem
[Yourdon, 1989:65].

I * documents the system so that designers and programmers can build
it, [Yourdon, 1989:65].

2.2.2 Information Captured During Analysis. The literature identifies a mil-

3 titude of elements to include in a model of the software requirements. These elements

are summarized below.

I
e Information Domain. This consists of the flow, content, and struc-

ture of data. The information flow describes the manner in which

data changes as it flows throughout the system. The information
content represents the individual data items in the system. Infor-

mation structure describes how these data items are grouped into
more complex data structures [Yourdon, 199, Pressman, 1987:1-12].

e Fu nctional Elements. A description of the functions the sys-
tern is to perform is included [Yourdon, 1989. Yadav, et al.. 1988.

Land, et al., 1987, Pressman, 1987:21].

I Idtcrface Characteristics. The links between the system and
the outside world are identified and described [Yadav, et al., 1988.

Pressman, 1987:47]. This may also include the existence and fre-
quency of any external events that the system must respond to
[Peters. 1987, McMenamin and Palmer. 1981:38].

a Dcsign Constraints. An, constraints on the design of the
system, including performance requirements [Yadav, et al., 1988.
Pressman, 1987:21], or "metarequirements' (design decisions made
up front by the user) [EVB, 1989:31].

3 2.2.. [?rquirernents Analysis Tools. Many differenlt people lise the Tfotl o h,-

.Iu,-l, diring software req(irernerts analysis, incliding users. desigrwrs, chers.

2-11I

project managers, and maintainers. Therefore, the model must promote compre-

I hension and communication among these parties [Jorgensen, 1986:182]. A number

of tools are used to portray the information described in the previous section in

an understandable manner. Each tool focuses on a dihferent aspect of the system.

Therefore, combinations of these tools are required to fully describe the software

requirements. Some of the more common and useful tools are listed below.

I 2.2.3.1 Data Flow Diagram. The data flow diagram (DFD) reveals the

processes in a system and the data flows between them. A DFD is made up of circles

representing processes, arcs portraying data flows, straight lines illustrating stores

3 of data, and boxes depicting external sources or sinks of data [DeMarco. 1979:51].

An example data flow diagram is displayed in figure 2.2.

£ Data flow diagrams may represent different levels of abstraction of a svs-

ten. Each of the processes in figure 2.2 may be broken down and represented

with its own DFD. This concept is known as the leveling of data flow diagrairs

[De:larco, 1979:72].

2.2.3.2 Data Dictionary. The data dictionary is an organized, textual

listing of the data items relevant to the system. containing a precise definition. of

each of the items [Yourdon, 1989:189]. The data dictionary is often used to support

I a I)FD bv defining the data flows and stores identified by the diagram. The conlents

of a data dictionary may varv with use. Gane and Sarson [Gane and Sarson. 19S2: Tj

include the following fields:

e A definition of the data item.

i Other related data elements.

e The range of values and meanings of values for the data element.

* TIe length of the element.I .\y encoding used for tfie data.1 Ot her editing informat ion.

2-12I

IUTNE3ivldWRPU
or e sO D R

iEC E IiE
W Aso mE 1a m0 S H IS

I ORDERS

billing
info

I ymes.invoiries s

II TNE

I Figure 2.2. Data Flow Diagram [Yoiirdon. 1989:1 11]

2- 13

Gain CPU

Cornpletedl

I Figure 2.3. State Transition Diagram of a Process

1 2.2.3.3 State Tran,9ition Diagram. A state transition diagram (STD) is

uised to capture the time-dependant behavior of a system [Yourdon. 1989:259]. Oil(

common notation uses circles to denote each possible state of the system. and arcs

Io re present transitions between the states. Labels on the arcs state the condition(s)

I requiired1 for the state transition [EVB, 1989:163]. Figuire 2.3 Is an example of a state

transition diagram of a process in a simple operating syvstem.

2.2.3.4 Entity R~elationship Diagram. The entity relationsiip (flaoraimi

I (LI~ I))was originally proposed by Chen as a tool for database design Khlen, If)391

1-11(diagrami captures sema-.tic information about tilie real world iii term s ()I

entitles, or --thin gs" , from the real world art(] the relatIionshi ips bet weeni thml n.3 \ ralY.Sts u1se tlie dliagram--s to describe the layouit of dat a stores 'in a Y Iii

.\ ; rt ii and1(M cClure. 1985, Yomirdou . 1989:233]. Thbe basic not at ion of aim EIII inl-

hi(Irys rectangles to -]enote entities and !Ii-)mnd(s to show time relationships betwel

11in. An m e.\ample ER!) is shown in figure 2. 1. There are various forms of emitlit

2-1il

Sales
Rep.

I'soe Prcis re

Figure 2.4. Entity Relationship Diagram (ERD) [Yourdon, 1989:235]

I relationship diagrams, varying mainly in the information included about the relation-

sips. For example, a one-to-many relationship may be shown with an arrowlieal oil

t he arc (as in Figure 2.4), or with -I' and M' on ends of the arc [Yourdon. 198():2 10 .I

1 2.2.3.5 Concept A'lap. The concept map is not a traditional too) 1'01

3 re'(jiiireinents analysis. Instead, it wvas developed by Novak and Gowin as an ((ll-

cat ioiial tool to summarize uinderstanding of a topic [.Nov-ak anrd Gowin . 1981]. -1-1h

c(~~~ ni letmapis iiar to an entity relationshilp diagram in thlat it iden tile rupr

tau1t (titi ls or concepts about a topic and describes the relat ionslips betweeni theml.

'u n wlot at ionl used in concep~t inap, is modest. Ovals are used to dlenot e coib A.

wh-iIe labeled edges idenitify the relationships. TIls simple. unst mucd lired not at iOl

mHAkes the concept map easy to apply and(uinderstand.

NI c La rren hlas p~roposed tw huese of concept miaps as a ri ald to eeopti(Ir50

Cocp
%la

isaPooe
Eseta

Cocet haince

Reat

Figure 2.5. Concept Map of "~Concept Maps-

U support systems (DSS). The concept map helps tbe decision maker communicate his,

£ iunderstanding of the problem to others, and provides a medium for idenlt ifyijiv 2) ;MY

misconceptions hield by the DSS builders (.McFarren, I987 1. Barnes [Barnes,

itld 'l iress 1,1'n phress. 1988] have built on this Idlea, proposing tleue(t(

ii iaps as a tool for modleling the problem space during sof~wa re requirelieuit i\is .

5 B~arnes muainitains the concept trap) is more descriptive thban thle informal stcat (2

of 001), a llowi rig, a more (di rect mevans of iden ti fying the Objects a rid opera t hi)I'

3thle prob)lemri (ace [Barnes, 1 988:6.] HarneL,' proposed mT-1bodologyq for a flll,

(.(c ob~ect -oriented mnethodology, including the Ise- Of conIcept itiaK is (105cillwd(

3j in ct ioni 2.3.1.2.

SI-1virf(2.-) is, all eXample of at conicept mrap) describinig th liossence of c(mi),

maltps I hatt aIt,('import ant to t his thlnsisl.

2-16

I
U

2.2..;6 Summary. The set of tools described above is 1v no u iais

5 (,0(11plete. The tools presented are those which are widely used, or, in the case of

the concept map. show potential for use in the requirement .i analysis phase. £,utte

corlnbination of the tools described above can be used to represent the majority of

the elements in the requirements model defined in section 2.2.2. English prose rr.v

adh to or support the information presented in the diagrams. However, it is difficult

I to ,tefine a complex system concisely and unambiguously with a natural language

alone [M\artin and McClure. 1985. Yourdon. 1989, Ross and Schoman. '977:9]'

2.2. .-Approachrs to Sofilivare Requirements .4 nolys s. The selection anl ;p-

i I plication of these tools depends on the approach taken toward requirements analysis.

Pressman claims that all requirements analysis methods are related by similar uin-

derlying principles. In any analysis method, the following activities occur:

1 The information and functional domains of the problem must he
represented and understood by the analyst.

e The problem is partitioned such hat detail is uncovered in a lavered
fashion.

e Logical and physical models of the system are developed.
lPresstnan. 1987:141-142]

I IPet, iirements analysis methods ,Iiffer mainly in the way the problem is paii-

Stoell d. Systems may be expressel in terms of data flow hetween syster fu cl, tons.

diiat a tructures, events and responses. or objects. \Vhile :specific inalysi S tltkdIs

I1%av i.s' 1 v,1iiple tools to capture different views of the system, one of the vicws

yplcally prdortlinates over the others. Methods ('an therefore be categorized hYSIn ,ir ;,ip roach to revjtiire nts analysis.

!]. .'. ;.I [)fla 'lut ()1,t ,,t / (.1 , .,, Not 'Irp rIsv ly. rI . rc t'I ttlIII

ittd; '.-, 'I , i , d at];ta flow rt a kc," 'aI w io , ' i o f tIi, ata hew d i ao 2 1' T. e ' tcii

2-17I

is 1rokenii iii) Ito the major functions req~iired of the software. Each oft' hese ma?;Uu

InI erm s ofprim itive processes. Ii s a x m l f ad t l w o in e n l s ,
De.\arco's, Structured Analysi isa xml fadt woIeedalyi

met hod. The major steps in his method are:

1 1) Study the current physical environment an(1 document it in a Cur-
rent Physical Data Flow Diagram.

2) Derive the logical equivalent of the current environment, and dle-
velop a Current Logical Data Flow Diagram.

:3) Derive the new logical environment, as port raved in the New LogicalI Data Flow Diagram pius supporting documentation.

-) Determine physical characteristics of the new environment. and pro-I duce a set of tentative New Physical Data Flow Diagrams.
.5) Quantify cost and schedule data associated with each of the possi-

bilities represented hv the set of New Physical Data Flow Diagrams.I 6) Select one option. representedl by one New Physical Data Flow Di-
agra mn.37) Package the New Physical Data Flow Diagram and supporting doc-
umients into the Structutred Specification. [De~larco. 1979:21-1

I lDeAlarco's approach has comue under criticism recently for the amiount of Iinto

prtdoctienig the old sys tem. Thiis realization has caiusedl a trend towa rdls

IrfTwithI a model of the proposed system and eliminating the formal docinent;at uti

j1 f lho exi,11ing sYsterm [Coad.18. You rdon . 1989:125].

U 2. 2.,;,.2 Frvrnt-IRcspons(IBasui A1nalysis. The event -rC5ponise a ppr 8(11

I;I'IcI.(Ixc byv tlm- identificat ion of external stiTTI 11ii toWhich IeW SySt0m 1111<

5i >j111 m)ad'i. . Shlaer anid M~ellor. 1988]. Thes- events are tisedl as a sta;)t in"

,wi for ,riing the anal vsIs of thle svst em.

I ~ ~~I %iii- response alplrroacl iesl lt InI the dlevelopmiient oi thI ~ es. taI

F' 44 111 *Y-t elil [McMenamnin arid Palmier, 1981. YwOirdlon. P)Y)1. \cc(riw

I-I

to Yourdon. t lie essential model is composed of anl environment rdodel wilich del i10S

I tie boundary between the svstem and the outside world, and a behavior model wi Kcit

provides a view of the insides of the system [Yourdon, 1989:3261.

Development of the environment model consists of defining a statement of plr-

5 pose, a context diagram, and an event list. The statement of purpose is a short (single

paragraph) description of the purpose of the system, aimed mainly toward manage-
niient. The context diagram views the system as a single bubble in a data flow lit;-

grain. and documents its connections to the outside world. The event list is a list of

£ externally generated signals to which the system must respond [Yourdon. 1989:337-

31 1].

IAfter the environment model is defined, attention turns to the development

of the behavior model. At this point, a data flow diagram is developed based oh

the external events identified in the environment model. A bubble is drawn for each

5 event in the event !ist, and named with the corresponding response to that event.

Inputs. outputs. and data stores are drawn as needed to represent communicationl

f between the bubble. This first-cut DFD is then layered both up and down; bles

are (oiIbined to arrive at a DFD at a level above the first cut DFD. and explodedl

3 to develop lower level DFDs. An entity relationship diagram is usually developed

in paralll to document the information structure of the system [Yourdon. 1989:36)-

3 2.2.,4.3 Data Striwhir Orn t (d An alsis. .As its name I n plies. , aL.

-t riWIctire oriented analvsi: specifies software requirements -y fo"using on th l' ,ha

3 s i',lctlire of a problern instead of the data flow. The system is therefore nio 'ld

rccurdling to ai informat ion structumre of the problem [Pressman. 19.7:2. q

[)at a sir lictire approaches share a riumber of cihararterislics. First. key ,ata

5 itits ali processes are identiied. Second. the structure of information is assuiwted

t I i Io. hi,rarc ial. Third. dat a s ri rct ires ar(re presellted as e ItIe a s(e(i ,In ' 4

2
I

I

data items, a repeated grouping of data items, or as a selection from among a set

of data items. Finally, a set of steps are defined for mapping the hierarchical data

structure into tie structure of the program [Pressman, 1987:172].

2.2.4.4 Object-Oriented Analysis. The final approach to software re-

I quirements analysis is the object-oriented approach. This is the newest and least

defined approach to analysis. There is general agreement in the sense that the over-

all goal is to identify objects from the real world in terms of the data and operations

that compose them. The manner in which a system model should be organized in

terms of these objects is still open to debate. Some specific approaches are discussed

£ in section 2.3.

2.2.5 Summary. This section has identified some of the current tools and

approaches used in the analysis of software requirements. Each approach models, in

f.some fashion, the information domain, functional elements, and interface character-

istics of the problem. The approaches differ in their choice of the characteristic(s)

3 to serve as the basis for the model of the svstem.

3 2..) Objct-Oriented System Models

There are currently two different approaches to the development of objeclt-

I oriented models of software systems. The first approach applies either data flow.

event-response, or data structure oriented requirements analysis met hods to muoril

th, system. This model is then transformed into a specification which models ilie

3 '\tern in termns of objects and operations. The alternative approach is to repla,'
the more traditional approaches to analysis wiih an object-oriented strategy from

1 te beginning l [I- . 1989. Vard. 1989:71].

3 2..?. 1 I'vansalinq Traditional .Mod(Is. \Ward claims that there is no L-

ri e'Ilt;I1 oppositiorn between certain hinction-oriented analysis techiqies (with N-

I.I
£

I

tensions) and object-oriented design IWard. 1989:821. Ladden agrees that at least
I somre of the principles of the two methods are complementary [Ladden, 1989:78].

and suggests that the major difference is in the order of applying certain analysis

activities. The traditional approach to analysis is to first define the functional ele-

ments and then ".package", or group, similar functior . ogether. An object-oriented

approach first identifies the packages, or objects, and then identifies the functional

elements associated with each object [Ladden, 1989:821.

5 2.3.1.1 Abstraction Analysis. Seidewitz and Stark have proposed a

method for translating a data flow oriented requirements specification into an object-

oriented design [Seidewitz and Stark, 1986, Seidewitz and Stark. 1987]. Their

method, which they term abstraction analysis, uses data flow diagrams as a basis

5 for identifying abstract entities and an initial control hierarchy. Objects. operations.

ald a virtual machine hierarchy are then identified [Seidewitz and Stark, 1986:5.1].

I The steps involved in transform analysis, taken from [Seidewitz and Stark. 1987).

areU
1) Identify the central entity from the data flow diagram. This central

entity is the best abstraction of what the svstem will do.

2) Moving away from the central entity along data flows on the DFD.

identifv the entities that directly support the central entitv.

3) Construct an entity graph depicting the flow of control between5 entities. The entity graph shows the interconnection of abstract
entities in the problem domain from a control point of view. The
graph serves as the basis for identifying objects.

) Develop an object diagram from the entity graph. The object (a-
gral is based on the central entities and objects of the entity graph.
The dliagram (sec figure 2.6) delineates objects and their requ ired
access of other objects.

5) Identify operations provided to and used 1y Ihe objects.

6) Repeat the above process on lower level DFDs. This will ilent i f
iit drdinate objects to those already identified.

'2-'21'-

I
I

7) Translate the object diagrams into an object-oriented design in Ada.5 [Seilewitz and Stark, 1987:4.60-4.64].

3 Ladden has identified some difficulties in identifying objects from DFDs. Wleii

DFDs are used together with traditional structured design. there is usually a one-

3 to-one mapping between bubbles on the DFD and software modules at the highr

levels of design [Ladden, 1989:84]. However, when identifying objects from DFDs.

3 the relationship between process bubbles and objects may not be as evident. Objects

may overlap more than one DFD, more than one object may be identified from a

S single level of a DFD, and even single bubbles of the DFD may be allocated to

more than one object. Another difficulty is in associating the data stores, flows arid

processes of a DFD with objects. This may require either grouping a number of DFDs

ntogether, or redrawing the DFDs with redundant components [Ladden. 1989:80].

According to Kenth, Seidewitz himself has admitted that it is difficult to get an

3 object-oriented design from a specification constructed without consideration of the

object-oriented paradigm [Kenth, et al., 1987:11].

I 2.3.1.2 Alternativw Methods. One suggested alternative method of

3 identifying the objects in the model is to supplement DFDs with other tools, such as

the entity relationship diagram (ERD). Seidewitz. Ladden. and Ward all suggest the

3use of the ERD as a means of identifying the objects for the model. The information

from the ERD is supplemented with a stimulus-response analysis [Ward. 4989:79]

3 or DFDs [Kenth. et al., 1987, Ladden. 1989:81] to define a more complete system

I :od'\ metlhod defined bv Barnes uses the concept map to organize the inforina-

S1 jion contained in the models of traditional analysis metlhods. Barnes proposes tHie

It,,v,,loptnent of multiple concept maps from the requirements specification and Iser

3 ilt erviews. These concept maps are then svnthesized into a single sentence stale-

Inl n of Ihe problem. and a single concept map depicting a soluntion strategy. Th is

'2-'2'2I

Run

U~Tser

Inefc Terminal
Input /O0 tput

Dat
Boo

Ilig'ure 2.6. Ob~ject Diagram of a D~esk 'rop Scheduile Organizer5Sleit n Stark, 1987:41.56]

2-2

single concept map serves as the basis for identifying the objects, attributes, and

I operations needed in the solution [Barnes, 1988:3.6].

2.3.2 -'True " Object-Oriented Approaches. The alternative to translating a

function-oriented specification into an object-oriented design is to use object-orient ed

techniques from the outset of requirements analysis. The benefits of the object-

orien:ed paradigm may be magnified with their earlier application [EVIB. 1989).

2.3.2.1 Coad's Frarnuork for Object-Oriented Requirements Analysis.

I As stated in section 2.2.4.4, the object-oriented approach to software requirements

analysis has not reached a consensus in its specific steps. One framework proposed

by Coad is to represent the system in terms of object, attribute, and process layers.

Ilie object layer identifies potential objects and their relationships. The attribute

laYer defines descriptive and identification attributes about the objects. The process

I laver defines responses of each object to external events, and the data flows between

objects [Coad, 1988]. The example in figure 2.7 shows the relationships between

objects at these layers.

3 2.3.2.2 Shlaer and .X[ellor's Object-Orienl(d Domain Analysis. Shli'kr

arid MIellor have recently proposed an approach to object-oriented analysis based o)

information, state, and process models [Shlaer and Mellor. 1989:66]. Together. thse

models represent the system requirements. The general elements in their approach

I. li]forration Medls. A detailed version of Chen's entity relationship
i ,iagrain Is 11sed to Identify the objects, attributes and relationships

of Ithe problem. (See the portion of an information model of a juice
factorv in figure 2.8.

2. .1tal(Aols. The life cycles of the objects are expressed using state
Iransilion diagrams.

I
! '2-'21

Ii-t a l

Object Layer Title

Title no.Paen

IState Sae
Attribute Layer VID

Process Laver UictDulae

GeGt J 4

£ F"igure 2.7. Coad's Object-Oriented Framework [Coad. 1988]

2-25

I

3. Process .Mfodels. The state transition diagram is used to identify the5 processes required to drive an object through its life cycle. Data
flow diagrams are used to depict the action processes for each state
in the state model.

4. Boundary Statement. The external boundary of the automated por-
tion ot tne system is identified.I

Shlaer and Mellor recognize the relationship between the nature of an object

3 (as actor, agent, or server) and it's location in the system hierarchy. Those ob-

jects at the upper level of abstraction tend to be actors sending messages to guide

3 lower level objects through their life cycles. Objects in the middle levels are usu-

ally agents. receiving messages from the tipper level objects. and requesting opera-

Utions from the lowest level objects. The objects at the lowest level of abstraction

are often unintelligent servers. typically used to directly model a hardware entiltv

[Slilaer and Mellor, 1989:74-75].

Sr2.3.2.3 Bailins Object-Oriented Requirements Specification Afthod.

Sidney Bailin proposes another new method of transforming a textual requirements

statement into a more formal, graphical model. His method uses both a set of en-

I titv relationship diagrams and a hierarchy of entity data flow diagrams (EDFDs) to

capture the system requirements. An EDFD is similar to a traditional DFD. except

3 that the nodes may he entities as well as functions [Bailin, 1989:609]. Each function

is performed in the context of some entity.

3 The steps in producing the specification are descriled below:

I
1. ld t/if. kry. problirm-domain /itir.ts. An entity relationship (Ia-

grai is used to record the problem donain cTilties and their inter-
relationships.

2. 1)is/in guish br/wa n ac/ire and pa.ssirr rn/i/ifs. lii it ivelv. active3 entities act as processes. while passive entities are data flows. Bailin
revises this definition to consider active entities as t hose whose fiuc-
ti os are importa nt, to consider during reqiiirements analy si s. A

2-2.)- 9

I
I
I
I
I

I Juice Specification 2 Recipe
Juice Name polo'ires . Recipe Name
percent solids min is required - Cooking Time

-percent solids max by -Cooking Temp.

- Min sugar content - Heating Rate

- Max sugar content - Canning Temp.

holds juice is madeaccording to
meet ng

3 Juice in RecipeI Juice Name (R1)

R17 - Recipe Name(R1) R2
- percent of ingred.

provides
directions for

is contained in manufacture of

5 S4 Batch
.5 Storage Tank Batch ID

STank ID - Amount, of Batch
- Capicity in gal. - Status

Date last cleaned - Vat ID (R3)
- Juice Name (R17) - Recipe Name (12)3 - Gallons in Tank
- Outlet valve ID (116)

I
lFigure 2.S. Slilaer and Mellor's Information Model of a .Jtiice Factory (partiah5 Shlaer and Mellor. 1989:69]

2
U

.) .)"I

II

I
passive entity is then one whose functions need not be considered

Suntil the design phase.

3. Establish data flow between active entities. Entity data flow dia-
grams document this flow. Each active entity in the ERD becomes
a process in the EDFD. Passive entities appear as data stores, or as

-. Decompose entities (or functions) into sub-entities and/or fnc-
licns. These next three steps form the heart of the method. In this
step. the ELF'D is decomposed into subentities and/or functions in
a new EDFD. Subentliie compose the entity, while a function is
performed by the entity.

5. Check for new entities. The new EDFDs are sca-rnod t- f they
imply the existence of new entities. These new entities, if significant.
should then be included in the entity relationship model.

16. Group functions under new entities. For each of the new entities
introduced in the previous step, the functions performed by or on the
new entities are identified. ,'iztng functions may be rearranged to
fall under one of the new entities. The goal of this step is to identify
the functions to ensure that the entity is functionally complete.

7. Assign new entities to appropriate domains. Finally, the new enti-
ties are assigned to some hierarchical domain. The entity relation-g ship diagram, if complex, can be redrawn to reflect this hierarchy.

2. 3.2.4 EVBs Object-Oriented Requirements .Specification. A final

nmfethod of object-oriented requirements analysis is suggested by EVB Software Engi-

3 neering. Inc. The requirements analysis process is documented in an object-oriined

requirenients specification (OORS) which is divided into an object-general section

3 ~ itlid an application-specific section [EVB, 1989:123].

Object-General Section. The object-general section of the OO[RS

,,taiiis an object and class specification (OCS) for potentially reusable objects and

5 ,i sses required for the problem. The OCS consists of the following elenwils:

1 \ lextual description of the object or class

2
2-2,MI

I

9 Graphical representations of the static and dynamic characteristics
of the object or class. Tie static relationships of the object or class
to other objects or classes is captured in a semantic net or entity
relationship diagram. The dynamic behavior of the object or class is
represented in a state transition diagram, or, for complex behaviors.
in a petri net graph.

" A list of operations suffered by the object, or operations the object
or class requires of other objects.

" Documentation of the state information of the object or class, in-5cluding restrictions oin the state of the object.

" A description of any constants or exceptions applicable for a class.5[EVB, 1989:123]

Application Specific Section. The application specific section of

the OORS documents the elements of the system specific to the problem at hand.

j 'This section contains four divisions. The first contains the OCSs for tb, applicatic,:

specifk em components. The second section consists of OCSs for any components

I specified by a design decision n'adc by thc user (a metarequirement). The third

segment lists any qualifications on components based on how or where they are iised

3 in this system. The final division of the applications specific section is a "precise in

concise" description of how the objects and classes interact in the system to solve

3 the problem. This description ties together the elements of the software system hw

describing items such as the user interface, timing constraints, system limitations.

I etc. [EVB, 1989:241-255]

5 Together. the object general and application specific sections form the obiect-

oriented requirements specificat ion. This OORS is the basis for developinug an OlJecl-

-[ie ted design.

52. 'Si innar

lie Widespread use of different, approaches to software developnlenlt SiI ies,,s

tliat Ilithre is no single "right" way to apply software engineering princilles. Nic

of tle pOroponents of the various approaches claim that their method is ,unixr>, illv

2-29

I

I

app~licable: however, few concrete guidelines exist for determining which approach (o

I ~ apply to a particular problem.

Regardless of the approach used for software development, it seems customarv

to apply that strategy in both the analysis and design phases. If a data str l'tlie

3 oriented approach is used to uncover detail in the analysis phase, the same tactics

are normally applied during the design phase as a basis for defining the architectural5 structure of t he software. Likewise. if software is decomposed based on the funct i,,nal

elements of the bvstem, activities in both the analysis and design phases are alined5 towards specifying and constructing these functional elements. In either case, the

model produced during the analysis phase maps naturally into lhe design phase.

The use of object-oriented techniques in the design phase requires some pre-5 liuinarv effort to identify the objects required for the solution. The application of

traditioiial analysis methods results in a functional or data structure oriented model3 of the problem space. These models do not map as naturally into an object-oriented

design. requiring some sort of translation into an object-oriented model of the I-

quirements prior to design. This translation may be difficult and obscure.

The literature points to a trend in appiying object-oriented techniques I'o:u

tlie inception of the project. Though immature. these techniq,.is show promise iHI

developirig miodels of software requirements that have a more natlural mappin i l

all ohject orien ted design.

I
I

I
I

I III. An Object Oriented Analysis Method

5 iThe last chapter dlisculssed the state of the practice in applying object-oriented

(lesign. MyI experience in teaching Ada and GOD agrees with those, su1ch as

la(Idln. 1989]. who reject the informal strategy as the ba~is for constructingf anl

olbject-orieite1 design. Students of GOD find it difficuilt to come uip with an inifor-

Vlirl strategy which is both complete andl descriptive of the problem. They seemi to

he obscs-,(j with the syntax of the English paragraph instead of the meaning it Is

suipposedl to portray. Even experienced designers find it (liflicrilt to Come lip wit h all3 informial strategy without working b~ackwards from a more I!'tuIiiive attempt at t he

design.

3 The practice of using traditional analysis tools (e. g. DEDs-) to specify the

problenm [Booch. 1986. Seidewitz arul Stark, 1986] is, a step in the right directionl.

I I lowever, as discussed in the previouis chapter. this approach also has problemis.

Often, there is not a clean, one-to-one mapping between the bubbles on a dlata Ihw%

(liagramn and[the objects or operations in the system. Thus. the transformationl3 1routi thlese tools to an object-oriented design is confirsing and difficuilt. Also, a

I pposd benefit of an object-oriented representation is that itmore closelyv matches0

3 li~te truictutre of the real world problem. It theirefore seemns to make lit tie sensew to

h v'-t nmod-l the problemT~ 1iSI n g fiunct ion-orient ed tools and 1 tlien t ranuslat e the mo' in

£~10 into atobject-oriented represent ation.

The objective oif this chlapter is to present a tnot hod of mnodeling sofI ware

I r#~T(i(iIi'lIt s withi an object-orierfied app1roachi fron thle outset. The chapter tir'sl

()it]1e t he J~qre iir "etS for t lie obJeet-orien1terl aTna1Y is M(M) ittet hod. \.N It

d-Io t he gnrlapproach of lie mnethod. aiid prcf'Tnt, il etailerl disclissiot1 (d,

3 ai, iiwtho tv,1 F]0(Si(iiallY.. it dIiscuisses t lie mia ppi it t ()f tI I mlodel iii o a tt oh] Jct -

I

¢.I C;oal.s of a, Object-Orirrted Analy.,'is .1l10hod

The following guidelines should be considered in the formation of an object-

oriented analsis method.

I /..1 Usr Orientation. The first objective of an o',,ject-oriented analysis

met hod is that it be "user friendly". In other words, the models dev-1oped under

3 the method should be developed with the user, or domain expert, in mind. Toe

often. analysis tools (with their cryptic syntax) are aimed at the design end of 1i1c

life cycle. leading the analyst off down a dangerous path. As Roland Mittermeir puIt

it:I
Both user and analyst are very soon involved in too much technical detail
to recognize they are travelling very well on a good road. but the road may
lead in the wrong direction. Users cannot discover this mistake, because
the symbols that are shown on the analyst's road map do not sufficiently

relate to them, and the analyst cannot bee it either, because he lacks
knowledge about the detailed environment. [Mittermeir, et al.. 1987:154]

T-he tools of the method should be primarily graphical. with supporting text iial

3 in formation. The tools should also require minimal instruction, so that doinaiul

experts can quickly learn to develop or critique the software models. The notat iou

I of tlie tools should be consistent whenever possible.

1 ./.1 .2 ..asr of U se. Likewise. the analysis method should be fairly easy to

pIip 5" v a i analyst. The complexities of the requirements of a large soft ware s\ ,'Ii
enough witlhout lhe alded diffcult ies of applyin a labyritr

-," ,f,'tep)s and tools. Barnes makes the interesting observation that the aimoImIut

(f ,1 --'-ri,, e, by a particular rmiet hod is inversely proportionial to its coripl,'xit

I
I :-

.. 3 informratioa Caphii-d. Sect ion 2.2.2 ident ifies some general eleliii(i

I t' the pro blemi t I hat are capt ured in a requirements a nalIysis met hod. ThItese elenienits

intcludled the interface chaa-teristics. information domain. functional elements. and

U dcsign const raints. These problem aspects should be captured in the 00A met hod.

In addition. an ob~ject -oriented analysis met hod Is specifically concerned with Ii hen-

ifving, the objects in the problem, dlefininig the attributes, of these objects. andi

3 recogizing fihe active relationships. or messages passed among these objects.

.1.4 Othrr Requi'rements . In addition to the above goals, the ohject-oremited

anl \sis met hod should:

* mo1del the svstem in a top-down hierarchical manner. The details ofI the problem should be presented in layers of abstraction, beginningf
with the most general concepts.

e support the definition of embedded systems requirements. After all,I tl~is is the stated app~lication domain of Ada.

* support requirements analysis of large softwNare systems. The toolsI and guidelines should consider the complexities of large systemls.
Tools (such as the -Informal strategy,") which are useful only for
describing small problems have limited use inI modlelling large soft -U ware systems.

* I nclu de minimal redunidanicy. Redundant intformnation Is uisefu lii3 choecki ng the consistency between multiple views of the problemt.
However. reduindancy also makes it (liflicilt to update a mnodel

-en that in format ion changes. The 00 A meothod shiouild em ph a-I size iflo(hifiabili tv over redundanicy.

* iiap into GOD. The output of the anlalysis Imet od should Map)
(1(awily into the dlesigni phlase. where a Boochi-flavored Ada object -

ofuu0ted(l esign is carried omit1

U~~ ~~~ hle g.e1Ier~i goals st atedl abhove the iewlect ion of tools and steps wil i

3 i'K i lit, ttltjt'ct-orienterl atmalvis inet hod ()f tiltis t hesis.

I

.2 General Approach to Object-Orientcd Analysis

The ideas which make up the object-oriented analysis method were syntlhe-

sized from many sources. The method was greatly influenced by the works of

[Booch. 19861. [Yourdon, 1989], [EVB. 1989], and others. The influence of E\B's

object, class specification (OCS) is particularly evident in the method's description

of each class of objects. However, despite some similarities in the form of class do'-

3 ,unentation, this OOA method is clearly different from EVB's in the method steps

and tools used to identify the objects and operations of the problem.I
3.2.1 Role in the Life Cycle. The generic view of the software life cycle con-

3sists of three phases: definition, development, and maintenance [Pressman. 1987:271.

The OQA method addresses the software requirements analysis activity in the ,lef-

3inition phase. The method assumes that a systems analysis has already been dorne

to define the hardware-software boundary.

U If there are areas of uncertainty in the software requirements. then d series of

3 prototypes may be justified to better understand these areas. Tools in the OO\

method may help to document desired modifications to the prototypes. At sole

3 l)-Oilt it will be possibie to identify the requirements for a major release. The 00.\

method can then be used to document this baseline set of requirements in a SlPci-

fiation. This object-oriented requirements specification will be useful later iiiiiiig

heve'lopment and (especially) maintenance of the software.

I'The O0A method does not attempt to identify all potential objects that will

1, prisent in Ithe final design. The method will only identify those objects which

;r1 cvi(dent from the definition of the problem and software inte(rface. The dcsi'1ncr

hoilid expect to identify addiltonal objects and operations (Ihiring the developl lit

phase that ai-(required for the coriplete solution. The dislinctlon between analy-sis

at,! dl'smin is a fine line- an attribuite of an object is an object in its own rirohi at

flir ixt lower level of abstraction. The analyst sho,ld dhc,,1errt obj'cts and clas ,s

3- 1

I
I

to the level of abstraction where the domain expert is confident that the essence of

- tlie problem is captured.

5 3.2.2 .Xltthod Tools. The object-oriented analysis method was conceived by

first identifying the tools and models required to satisfy the goals listed in section 3.1.

Once the end products of the OOA model were selected, the steps in constructinIg

this model were defined.

The OOA method attempts to bridge the gap between the problem domain

expert and the designer. The nature of the communication with these parties is

different. The domain expert's view of the world often lacks the structure desired3by the designer. Therefore, the analysis method must transform an rinstructured

view of the problem into one which is structured enough to minimize t|ncertailit"

5and ambiguity. The method steps are guidelines for this transformation from tlc

domain exl)ert's view to the designer's view. These steps are not automatic-they

Irequire the intuitive judgement of the analyst and review of the domain expert to

fill in any gaps in the representation of the software requirements.

I.2.2.1 Communication wib the Domain Expert. In the OOA method.

U coitimunication with the domain expert is handled primarily through concept na ps.

story boards, and a list of external events and desired responses. As described

in) section 2.2.3.5, the concept map is an unstructured entity relatioishiip diagrain.

SFlie uristructured natiire of the concept map enables the domain expert to (lraw

alid nlderstand it with minimal training. This set of concept maps commiillicates

3 a !zenc,'ra i nderstanding of the pro)lem elements to the analyst and lesigner. The

IiIajIs are also use od to identify the objects describing the problem arid their attril}iitrs.

3Th1 event /response list identifies external stirmuli to which t ie software" ImIst

r,'pii(I l11, st ory boards provide a means of depict itig scenarios from whichI It,,I , uts a l rcsporises are idertified. 'hie events will later be v iwed as message.s that

i c,,,, to be pass,('l between obj:-cts, in the form of an object calling 11pon an opeiat i,,nl

I3-.)

I

provided by another class of objects. The response of an object to a message may also

Iimply additional messages that the object must send to other objects in the system.

Together. the concept maps and event/response list paint an insightful picture of the

software requirements.

1 3.2.2.2 Communication with the Designer. The information from the

domain expert's concept maps, story boards, and event/response list is conveye(l to

the designer through a set of entries in an "object encyclopedia". This encyclopedia

is similar in concept to a data dictionary, but its entries contain more comprehensive

information than a traditional data dictionary. The major components of such an

3 entry are:

* A textual description of the object or class.

e An interface diagram showing the messages an object or class re-3 ceives and passes to other objects.

* A structure diagram illustrating the sub-objects or attributes of a5 class of objects.

* A state transition diagram displaying the states of an object and the
transitions among them.

These items are described in more detail in section 3.3.2.6.U
3.3 Stcps in th Object-Oriented .4nalysis Method

The Object-Oriented Analysis (OOA) method consists of the following steps:

3 I. (aptuire the domain expert's view of the software. This is accomplished

I liroiigli lie following act ions:I
3 a) [)efine the overall purpose of the software.

b) I)raw a set of general concept map ; which describe I lhe overall prob-

3-li

I- -.•

I
I

c) Outline any user interface and operational scenarios with story
3 boards.

d) Produce an event/response list for the software.

e) Identify known restrictions on the size, reliability, or execution time
constraints of the software.

f) Identify any domain expert imposed design decisions ("metarequire-
nments") for the software.

3 2. Model the software requirements in a top-down, hierarchical manner. In

this phase, the following guidelines apply:I
a) Draw an external interface diagram for the software component.

b) Identify any high level actor objects which perform some overall
algorithm.

c) Construct a preliminary object list.

d) Identify the senders and receivers of the messages/events.

e) Document the object classes.

These steps are covered in more detail in the following paragraphs.I
3.3.1 'Step One: Capture the Domain Expert q I'iew. The first step of the

object-oriented analysis method aims at capturing the domain expert's view of the

problem. Step One my be performed either by an analyst working with one oi

more domain experts, or by the domain experts themselves. The emphasis in this

step is in conveying understanding of the problem from the domain expert(s) to lie

I analyst. At this point, little structure is imposed on the information captlred.

3 .3.3.1.1 .Step /a: Dt-fine the orerall purpose of thr software. The state-

rien? of plrpose simply gives the reader a starting point. for understanding the ic-

3 ,t11ii rneents of the proposed software system. [he length of this description TiMY

r Irv wit Ii tire complexity of the system, blut can be as short as a single sent encc. TI,

,1tn1plasiz,' oldv lihe essential eleriients of the l)robletn. the upper limii shuilll be ,i'

3-7

I

3.3.1.2 Step 1b: Drau general concept maps of the problem. These con-

U cept maps are to provide a general understanding of the elements of the overall prob-

lem. At this point, no structure is imposed on the format of the concept maps. The

dornain expert is free to lay out the problem as he sees fit. The maps will later serve

as the basis for identifying the objects of the problem space and their characteristics.

There are a number of sources of input into concept maps. The analyst inay

3 draw upon a textual statement of preliminary requirements, observe the design or"

operation of a previous system, conduct surveys, or interview domain experts. \hlen

3 developing concept maps from interviews, it is important for the analyst to do some

"homework" before the interview so he has some idea of the important aspects of

3 the problem. Initial concept maps may be redrawn later to clean them up.

i \When drawing a set of concept maps. the analyst should keep in mind the

central concept of each particular map. The maps should identify both static (sti'nc-

3 t aral) and dynamic relationships between the entities. The maps should concent rate

on the problem aspects that are important to the software solution-it should not

emphasize physical details (e.g. color, physical location) that are not important

to the solution of the problem. Likewise, a single map should not be packed with

U too much detail. If the concept map does not fit cleanly on a single page, attempt

m move the -peripheral" concepts and/or relationships to more detailed maps and

(onicentrate on the central concept of the individual map.

The perception of the problem by domain experts may change over time (Ilin,

to recent problems or situations. Also, different domain experts may have differenw

3 views of the problem. Therefore, it is desirable to obtain concept maps from several

experts in the application domain, and over a period of time. These maps will have'

3 cOrn llionl nodes. indicating the most conmmon an(l consistent elements of the proleh'in.

lie concept maps should then be cotnbited into a single set of naps portray in

n C(I J (Jlifated innderstanding of the problem. This set of concept T1 aps may thln Ihe

r,'viewed by tihe domain experts in an at tempt to breed a consensus view of tlie

3-I

I
I

p robI Cle.

3.3.1.3 Step lc: Corstruct story boards. Story boards serve as an early

paper prototype of the proposed softwrare. Story boards are useful in specifying the

physical layout of a user interface. Screen displays and menus can be drawn in story

I boards. giving the domain expert and analyst a feel for the system as it plays out a

number of situations through different story boards. However, story hoards are not

limited to portraying only the physical layout of display screens. Story boards call

be annotated with logical, as well as physical, entities depicting the state of sonic

object as it responds to external stimuli.

3 These models for the interaction of the software with the environment are lisefill

to prototype the "look and feel" of the software at. an early point in the life cycle.

5 A series of story boards can assist in capturing a sequence of interactions between

the softwa , r " h ", v;rc ment, much iike a comic strip tells a story through its

1 sequence of frames.

This sequence of actions portrayed through the story boards is useful in acting

out scenarios the software may face. The scenarios will be useful in later steps to

3 identify external events and responses, and to construct state transition diagrams

for obJect classes.

I ..3. 1. 4 Step Id: Producc an ecnt//responsr list for the softicarr s!.h/ Il.

5 The event/response list provides an action-oriented view of the problem to coniphc-

ruent the more ,structural view portrayed in the concept maps. This list will iihiltIh

3 all events ext ernal to the software to which it must respond. The event /response list

inCludes a short description of tle response to each event, as well as any informat tin

(oricerninig the frequency and volunme of the event, and any maximum response ti iltle.

If ti, evet i, periodic in nature, the arialyst should note this fact.

I \V'Itl developing the eventl /respotilse list. it mna be helpfu|l for tlie allk>i

I
I 3!

I
I

and domain expert to walk through different scenarios from the perspective of the

I software system. These scenarios, acted out through the aid of the story boards.

may aid in the identification of events to which the software must respond. The

events and responses evident from these scenarios form the heart of the list. Some

of the arcs on the domain expert's concept map which are labeled with action verbs

are also potential candidates for these events. The events in the list may be initiated3 either periodically, or due to some stimuli from an entity external to the software

component.

3 The responses to each event should be written in enough detail with respect

to the problem elements. For example, if an event in a cruise control system is

3 the pressing of the accelerate button, the associated response should be specific as

to what needs to be done by the system. Therefore, "increment the desired speart'

is probably better than "go faster" An event may require multiple or conditional

responses. If the response is complex, it may warrant more than a simple sentence.

The analyst should cross-check the set of concept maps and the event/response

list. Each object stated or implied from the nouns in the event/response list should

be included in the set of concept maps previously developed. Although this may

3 require redrawing the concept maps, it ensures that the concept maps adequately

address all phases of the problem. The event/response list and concept maps may

3 be develope(i conc,,rfnt!y.

The event/response list will be used in phase two of the method to aid iII

idlentifying the messages passed between objects.

I .3..].1.5 Stcp .c: "dentify any restrictions on th softare. Any knownl

I plivsical or reglulatory restrictions on the software should obviouslY be stat'dt as

'ar lv as possible. Sich restrictions may include the size, reliability. execu tion tiC,

Ior ocf inv of the software. Documeriting this in format ion at this tirle co ld ax'erl a

c0,4,lv dcsigri (rror.

I
3- 1II

I

3.3.1.6 Step If: Identify any "metarequirements". Metarequirements

I are design decisions imposed on the system by the user (or even higher authority).

For example, use of a certain internal data base format may be dictated to ensure

I consistencv with existing or future software.

I 3.3.2 Step Two: Add Structure to the Requirements. The second phase of

the o1ject-oriented analysis method entails modeling the software requirements ill a

itop down, hierarchical manner. Each class of objects, and their inter-relationships.

are identified and documented in this phase of the method.

3.3.2.1 Step 2a: Draw an external interface diagram of the soft 'arr

component. This diagram puts the software system in context with the outside en-

vironment. The events in the event list (with the possible exception of periodic

events) will come from the external entities shown in this diagram. The external

3entities often show up on the set of concept maps developed in the first phase of the

method.

S3.3.2.2 Step 2b: Identify any high level actor objects wvhich perform

sortie overall algorithm. When implemented in Ada. the "middle part" of the exter-

nal interface diagram is often an all-encompassing actor object which sends messages

3 to other objects to dictate the flow of control of the software. The algorithm run hy

this object is the "glue" which ties all of the objects together by defining a sequence

3 to the sending of messages.

The need for such a high level actor object is hinted at in figure 3.1. Flie

rCeal-world objec s and operations of the problem are encapsulated into software

3 representations of the entities. A-\part from this, there may be an algorithm which

maniipulates the objects in the problem. In Booch- flavored object -oriented design.

3 tiis a;gorithin takes the form of a high-level actor object sending messages to i l

,,ijet<l. (The nature of this high level algoritlirn may be similar to the "ir~r.il

3-1 I

Problem Space

Programmer's Human
.. eppresentation - - - - - - - -- InterLT1 tQn - - - - -

O p r t i n S o lu tio n S p a c e

Figuire 3.1. Relationship of Objects and Algorithms [Booch. 1983:39]

strategy" of Booch's initial OOD method.) This overall object is ',ypically the 'au

I program" ini an Ada implementation of OOD. If the algorithm implemented by this

overall object is complex. this ob~ject may be broken dlown Into subobjects. iulic

inenited lby Adla tasks, each implementinig dlifferent, logical areas of the problem. Ani3 example is the Envuironment AHonitoriri~ design problemn In [Booch. I 9871j.

At tHe highiest level of abst ract ion., it .may be di fficu l t to di sti ngi ish bet weenl

I Imi-If-lvel actor object and a functionial proc'ess. ie deflitiion of ani object presenited

H tHie last ch)apter requi ires t hat an object. mainutai n some state in forma tion. H owever.

3 I lii, state mnay be simply thme composite st, ~s of each of its suib-objects.

3I1

I
i

At this step in the method, the analyst should identify any high-level algorithni

controlling the objects. In complex problems, this highest-level object should now

lbe decomposed into multiple actor objects, each controlling some logical area of the

pro',)lem. At this point, the analyst would then draw a structure diagram of the3 top-level object to illustrate this decomposition. The domain expert's concept maps

and the event/response list may provide some insight into this decomposition.

I 3.3.2.3 Step 2c: Construct a preliminary object list. The next step of'3 the method is to construct a working list of objects that will potentially appear in

the solution. The objects will normally come from the concept names on the domain3 expert's concept maps. The nouns in tile description of any high-level algorithin

niav also imply additional objects. In addition to these guidelines, the concepts ot'

abstraction and information hiding may help divide the problem tip into objects. In

the spirit of [Parnas, 1972], each object should hide the implementation of some ab-

I , ,,. i,;~ou 1,,,1 p,ol.l-ern. Include entities from the ext.,rna! interfacc digrain

in this list.

Once a list of objects is identified, group the objects with similar characteris-

tics under the name of a class that, encompasses those objects. If there is a "'large"S,1:'nber of object classes, attempt to group logically related object class,.s into suh-3 svsltems. A subsystem denotes a logical collection of cooperating structi:res and tt,

[Booch, 198 7 a:615]. In other words, one can think of a subsystem as a so of logically3 related objects that forms some entity at a higher-level of abstraction. The groupin1g

of objects should form a manageable hierarchy of subsystems and objects.I
3...2.i Step 2(d: Idetifgf mssagye .s(ld rs aitd rrrrirCi,. kirlh of tle

its iin the event/response list can be viewed as a rnmessage between two oh).Icls.

I lc r(.sporoe corresponding) each event briefly describes the algorithIn to be i1-

I,'iiinted I v ihe receiver of the message. This step requires the analyst to ie'i 11'

t li, -rider and iceiver for each of these niessages.

II :LI-3

If the event has more than one response, it may be that these responses should

be performed by different software objects. In this case, identify which objects

pertorm each of the responses. The main receiver of the message will then have to

forward the message tc other objects to signal them of the event.

3 If none of the objects previously identified are appropriate as a sender or re-

ceiver of the message, this is an indication that either an external entity is missing.

or that the object(s) identified thus far are not adequate. A new object may have to

be added to the "isi. ITowever. periodic events may have no explicit sender, unless

3 the source is some timer object.

St3.3.2.5 2e: Document the object classes. Each object class is doc-

umented with an entry in the "object encyclopedia". Descriptions of external enmit ies

are included if their interface is modeled in software.

The analyst begins by drawing an interface diagram for the top-level actor

object. This diagram shows the access requirements between the high-level object

and the objects at a certain level of abstraction. At the top level, most of the

messages from the system-level event/response list will appear as arcs between (he

all-encompassing object with other objects. However, it may happen that some iof

the messages from the system-level list may h,: more appropriate at a lower level of

abst raction. At some point in the analysis review, the analyst should ensure that all

events in the event/response list are shown as messages to an object.

I [or each class of objects shown on the interface diagram. the analyst enters a

new reference in the "object encyclopedia". If new objects from the problern space

are ,i icovered. t hey are included in the list of objects developed earlier. (Be caref,1

S,'iot to add o)jects to the list that are only part of tie sohilion anld are not requirel

to lescribe t he problem iThese Objec('s Will biden t ified in t li ,dsi it1 l)iase.

\VieH modeling external 'ntities as objects. the classificatlion of these exl('llal

',hi),'t,(as actors or servers depends on t he nat ire of t he external (levice (i.e. plled

3- 1 1

I
I

vs. interrupt driven). Some of these external entities (such as a keyboard) may kc

I accessed through the operating system instead of implemented as a software object.

In this case, documentation of these purely hardware entities may not add anything

I to he specification.

In some circumstances it may be helpful to more explicitly document the in-

teraction between multiple objects. In this case, the analyst may want to include a

separate Petri Net Graph depicting this complex interaction among objects.

This process is repeated at lower levels of abstraction until all objects from

the object list are documented, and the software is modeled to such a level of detail

where the problem is well understood. As stated in section 3.2.1, the object-oriented

analysis method concentrates on defining the problem wit l respect to its interface

with the outside world, as defined by the domain expert. To attempt to document

the problem below this level seems to involve specifying more of the "how" than the

'what" of the problem. The analyst should try to refrain from inadvertently crossing

his tine line between analysis and design.

U 3.3.2.6 Contents of an *'Object Encyclopedia" entry. Each class of ob-

jets in lhe object encyclopedia is docunented with a textual description of the

01)jeer, a structure diagram (showing its attributes/sub-objects), an interface (lia-

3 .gram qh,wi n the comm,inication of this object to other objects in the system).
a state transition diagram (if appropriate). a description of any linitations on an

3 o1)ject's state, a characterization of messages received (operations provided). a de-

scri ption of nessages sent (operations required) to other objects. a list of except ional

I (rror) conditions the object flags. a list of coinstantts exported a list of objcct,

ft, -lass bcing documented. and any reuse coisi(erations for the class.

T lie textuial description of a class of ,)Jects ,iniply states tHe purpose (f tIe,

i ,Ii,', t !.. also Inav include any iis(cllaii .o(s inforniat ion about t lie class ui,t

111(1ireil~ d aivwliere else.

! 3- 1.-

The structure diagram is a --pseudo" concept map. It contains concepts and

5 relationships as in a standard concept mnap. hut the relationships are limited to thle

st r'ctilral relationships of the class b~eing dlescribed. The structure diagram exp~oses

lie internal view of a ca<of objects. documenting its attrihbutes or sub-objects. it

call be dIrawn using as a guide the conceplts linked by structural verbs (e. g. is a. has

a. etc.) onl the domain expert's conicep~t map.

The interface diagram is also a -pseudo" concept map. It dlisplays the extevrnal

vilew Of tlic, class-messages sent or received by the class. When drawing an iterlace

1iagrani for a class of objects, it is helpfull to list. the events and responses for Thle

i vididual class. This list aids the analyst in Ident ifyi ng thle messages sent and14

r'cej\ ed. The events should match with the messages received by thle object class.

wIIhle i(response descriptions (along withi the act ion-verb liiiks on the doina iii

I expert's concep~t map) will hint at thle messages sent to other objects. Thle messages

,clit andl receivedl by the object are documented in the corresponding text as well.

Thlis text furtl-r describes the significance of each of the messages. In the list of

mressages sent, the class name of the receiving class is Included, unless the class :is

rusable and thle receiving class varies between objects lin the class.

3 ~The state transit ion (diagramn (STD) for the class of objects may also ald thce

aalykst Inl Went ifving mess ages that anl ob~ject receives. The STD may ind1lica 4

lh at a cert a;i in essage rmst he recei vedl to transition into a cert ain state. TlIec

a r I St TIav also stu~dy thle st ruct nr diagram- for thle class to ascert aini whet her at

U >4 ("'Fet or. coinstirct or. or it era tor operation needl be providled for each attri but e. Th e

414 iiii Ii at) of i)pera tons requtired ani (provided shoulId be in fluiencedl hv thle conreepi

iAb, oliP roli ulluq. It is desi rah1 e for air object to exii it black box roitp/jag. \V 14 14

lie it rt i co 1r o ach riliessage received reqires knowledgfe of onk lvle class 1llui

111c(1111110eiLte rat her thIan iib box coupling where thle met hod requires kniowle1dut'

1* at hefr (A) Pct~ IT) It SIiMnplerIIiei It at 1011 [IK\13 . 1I99:M I1 F ItI alIlv. If a mlessage received~

It le(aK41obj'ects inovsa (oilllex altgorit hTIm Ill it s res ponse. aii oiutlIil4 ol'

t is, algorit him Ilay; be included Ii t hie message descript ion.

U The analyst draws the state transitioi, diagram based on any state informat loll

implied inl the domain expert's concept map, story hoards, or event /response list.

Uhec niessages received by an object may indicate a change of the object's state Is

required. Limitations may exist onl the state of an object. These limlitationls may

a A limit on the number of itemzs In a homogeneous composite iteml.

I a A limit on the range of %-aluies Ii a scaler class.

. A- lim'it on the length of time ant object may be In a particular state.

Those limitations are do(iimente l ii the textual informnat ion for t lie class.

I FTe series of structure and interface (diagrams defines a hierarchical mode! eI

ft(i objects Ii ,lie problem space. Thie ob~ject encyclopedia en"tries may' be grouiped

either alphiabetically or hierarchically, from the highest level of abst ract ion to t lie.

lowest. The hierarchical grouping of entries seems best managed withI a soft wa-re

oolso hattheanaystcaneaslyget from one level of ast raci ionl to ariot her. VTe

roy iirements for such a tool are (lescrib-d lin the next cha pier.

liriallk. the object-orienit d anial';sis mlet hod assumnes that t1he domlain expeil

U vill he involved lit r-viewing fte prodtic'.s producedl by tie anallysis. Illis Input ;t :t'

revie is e"srIt lal 'in plhase one III falct t he domain expert Is) niav p)erfo)rmi ispia

Jl t li arlvsis in~deperVli(eitI of a separa te arialyst . The doriiair expert'., reviww1

a <,1 cri-ut-ia to lie smicc(-'ss of tilie iliodel of ft(i req1 uiirement s developed li ! ie(set jit

I vt1,e of t11 IoOA; iit hod. Althbough lie natulre of tiilis model is, miore KI rtilr ti-

3 1. iot hew lK I-ts the (lomliai ox port lotllhd be ahl~e to follom lhe mout' hi ,1

I I I Iott I f I cfcep it p a it I eI ve II I I ,t Ie po ir I ea rlI -. [i i II a itt 1 h11

3I -, I ; It l n tl pro V ls t ie 1rd en I)(~ 1 wet (eII t Ie (1I0I01 II x It 'X ert ait I to it d'KlLO

! I -i,,)Id ttuleultaIuol aili1 a;W r ott tf 1 Ito t)Hitole Iefot-C moreI- formali'l (11"Ii~ (-M I W tK

IT

I,U

3.3.3 Sample Analysis Problem. The following example shows the OA

method applied to the requirements analysis of a typical cruise control system fo-

an automobile. Enough of the analysis is presented to provide in indication of the

intended use of the method tools.

I 1..3. 1 Step One: Capture the Domain Expert s View. Phase One of

the method entails the following steps:

Step la: Define the Overall Purpose of the Software.

The cruise control system adjusts the automobile's accelerator to automatically

maintain a constant vehicle speed.

Step 1b: Draw a Set of General Concept Maps Which Describe the Over-

all Problem.

The set of concept maps is shown in figure 3.2 and figure 3.3.I
!
U
1
I
I
I
I
I
I 3 "

3Brake disengages hsO

Cris
Co toUi t i sc nhIst

sesEnae
cotole

ThoteprodI~ eie

Seto

Iclrt
N !i1ire3.2.('llrer \?p: (ruie (Xit m ut ton

,ese

Butn
eI.0f

Iut
e.g

Aceert
Buto

0I un
InrmnsButn0I

SeIr ap
Buto

Reum
SesBto

Deie nae

Figur 3.3.('oireptMap: riii C ont rolttos

Fiue33Iocp a:Cus oto iitn

3I2

I
I
I

BUTTONS

3 D Off Desired Sneed:

0 Oti Cruise
40 60 Control

set 30 70 State

E3 DResume O ff

D] Accelerate On
I Speed

En ga ged

I D Brake Pressed Throttle Control:

The crm e control powers up in the "off" state. Before it is turned on and .r to a specific speed, the cruise -- mii- I3will renii idle. Only the "on" button will have any effect in this state.

Figure 3.4. Cruise Control Story Board: Initial Setting

U Step ic: Outline the User Interface and Operational Scenarios with Story

I Boards.

There are no screen displays in the cruise control system. The speedoneter5 does give an indication that the cruise control is operating. but tie cruise contr nl

sVster does not directly manipulate it. However. story boards are useful for revealing

I th reaction of the cruise control system to various inputs from the environment..\

few such scenarios are portrayed in the story boards in figiires 3.4, 3..'5. 3.6. 3.7. and

U3.' .O her storv boards could be added for a more complete dscrip ion of tie cliws,'

co11 rol system.

3
I

I

I
I
I

BUTTONS

0 Doff Desired Speed:

Oil 50 Cruise
40 60 Control

-Set 30 70 State

30 Resume Off

D Accelerate S eOn
I Speed

Engaged
I [--D Brake Pressed

Throttle Control:

When the "on" button is pressed. the cruise control change-, state, from "off" to "on". The crufise control sy.,t,!jI
will now respond to the "set" button.

Figure 3.5. Cruise Control Story Board: On Button Pressed

I BUTTONS
BUTD Off

Desired Speed:

D n n Cruise
S-t0 4 0 60 Control

'T et307 St ate
E esurne Off

D \ccelerate On

SpeedI Er 1 Egaged

- -Brake Pressed

3 Throt tie Control:

it,' the ",t' I,tit ton is pressed whitI the cruise (ortrol is in the "on" state, (hie criise control ente'r, tie I'''liie''"

0or ,. I lie dir,'d speed is set to Ihe ,-urrnlt sp'et. and tlhe cruise control begins to , ,onfrot lt- t Ihrot t le lt r. I
.1hoiI , iaige', till .[...-.t are necessary.

Figure 3.6. 'rist< ('ontrol Story Board: Set I31t ton PreswtlI
, .).

I

I

B IUT T ON S

B TOff Desired Speed: F0

Oil 50 Cruise
3 40 60 Control

-- Set 30 70 State

3 -Resume Off

0 Accelerate On3 Speed
Engaged

I Brake Pressed

Throttle Control:

If the brake is pressed while the cruise control is engaged, the system is disengaged and transitions to tile .-f.
state. The throttle control is no longer active. The desired speed, however, remains set to its value in anticipat i,n
4 a later command to resume the cruise control system.

Figure 3.7. Cruise Control Story Board: Brake Pressed

I
BUTTONS

5D off Desired Speed: W-0
-- On5 6 Cruise

1Ise 0 6o 0 Control
-- Set 30 70 State

D Resume Off

ID Accelerate On
i Speed

SJ~eeF, ngaged

E I Brake P.,essed

3 iThrottle Control: Accelerate

If lie 'rrent speOw drops below the desired speed while the cruise, control is ngaged, the iise 'ntl, 'in
.n, % ignd to he throttle control to accelerate the vehicle. This accelerate signal will (o t iinu e lt il t h, , CIII

- d is equal 1(,i greater than the desired spsed.

i Figlre .,8. ('rtlise (ontrol Story Board: SpDe l)rop,

I3-23

I
I

Step 1d: Produce an Event/Response List for the Software.

3 Eventl: The on button is pressed.

Resp.l: The cruise control system is activated.

i Maximum response time: 0.5 seconds.

U E2: Set speed button is pressed.

R2a: Cruise control system is engaged.

I R2b: Set the desired speed equal to the current speed.

3 Maximum response time: 0.25 seconds.

E3: Time to update the throttle position (periodic).

R3: If engaged, then set the throttle based on the current speed vs. the
desired speed.

Projected event rate: 10 / second.l
E-l: Brake is pressed.a RI: Cruise control svstem is disengaged.

Maximum response time: 0.1 seconds.

E5: Resume button is pressed.

1{5: Cruise control is engaged.

5 Maximum response time: 0.25 seconds.

3 E6: Accelerate button is pIshe1.

l¢(i: !nrretierit desired speed.

i Maxirulim respollse I iie: 0.25 seconids.

3-21

iII

I

E7: The off button is pressed.

1 R7a: Throttle control is disengaged.

R7b: Cruise control is deactivated.I
NMaximum response time: 0.1 seconds.I

Step le: Identify Known Restrictions on the Software.I
" The cruise control system object code must fit within 16K of mem-

orv.

" The cruise control system must disengage if the break is pressed at5 least 99.99999% of the time.

3 Step 1f: Identify any "metarequirements".

The maximum speed allowed for setting the cruise control system is 100 miles

i per hour.

3 3.3.3.2 Step Two: Model the Software Requirements in a Top-Dow..

Hierarchical Manner. Phase Two of the method consists of the following steps:

I Step 2a: Draw an External Interface Diagram for the Software Compo-3I
The external interface diagram is shown in figure 3.9.

3 Step 2b: Identify any High Level Actor Objects which Perform Some

Overall Algorithm.

None. The algorithim of the cruise control system object is not complex (nIigli

3 to ,lcomlpose. The object is documented in the object encyclopedia.

I

I 32

Timer3 Speed
Sensor

determine

spe inl
BIaeAclrt

sigalsBut ton

I J~~~dcleJ(3.rte (rto vsteni ignalsrfw

ThoteRsm
Buto

signals - .)gia;

Sesin l

I
I

Step 2c: Construct a Preliminary Object List.

Cruise ControlI
Throttlz controlI
Speed

3 Current Speed

Desired Speed

Button

Set Button

5 On Button

Off Button

* Resume Button

Accelerate ButtonI
Timer

Step 2d: Identify the Senders and Receivers of the Messages/Events.]
l:Vcnt I: The on biitton is pressed.

3 Sender: On Button

R eceiver: Cruise Control

5 1'.2: Set spee(l button is pressed.

SeAder: Set Bntton
I 1 eeei ver: Cruise Control

ST . (*r~li :e control svsteni is en-age(I. (WPerformed l)v ('riie ('ouit rt,1

1 P21,: Se,. the desired spe('d (quI l to the <'lrre('Tt spe(d. (P,'rfo)rvnleI I

(sieui " ('ont rol)

II

I
!

E3: Time to update the throttle position (periodic).3 Sender: Timer
Receiver: Cruise Control

I E4: Brake is pressed.
Sender: Brake3 IReceiver: Cruise Control

E5: Resume button is pressed.
Sender: Resume Button
Receiver: Cruise ControlI

E6: Accelerate button is pushed.
Sender: Accelerate Button
Receiver: Cruise Control

I E7: The off button is pressed.
Sender: Off Button3 Receiver: Cruise Control

R7a: Throttle control is disengaged. (Performed by Cruise Control)5 RTb: Cruise control is deactivated. (Performed by Cruise Control)

Step 2e: Document the Object Classes.

The following pages document representative classes of objects present in the.

3 ri sC conitroi problem.

I
I
1
I
I

I_,

I
I
3 Cruise Control Object

3 Text ial Description:

The cruise control is the "brain" of the cruise con ol system. It keeps track

3 of tie state of the cruise control system and periodically updates the position of t l1w

throttle to maintain a constant vehicle speed.

I Structure Diagram, Interface Diagram, and State Transition Diagram:

3 See figure :3.10, figure 3.11. and figure 3.12.

Description of messages received:

S Break pressed Signal that the break pedal has been
pressed

Set button pushed Signal that the set button has been pressed

Off buttuI pushed Signal ;Ihat the .);i ;ii Il on ias been pressed

On button pushed Signal that the On button has been pressed

Resume button pushed Signal that the Resurne button has leei
pressed5 Accelerate button pushed Signal that the Accelerate button has been
pressed

Uldate Throttle Signal that it is time to tupdate the throttle

position

I
I
I
I
I
I
I L!

Cris
Coto

Uashs
a

Curn
Spe

Stt
De e

3 Engaged

3 ~ ~ ~ ~ I gur-ir . M f. ('rilsc (Uwt rol: St ruct ure Tiuru

II

I Brake Pressed
Set. Button Pressed
Off Button Pressed

i On Button Pressed
Resu e Button Pressed
Accelerate Button Pressed

U~pdate Tlirot tle

Criise1 Cont rol

| 1 '
Disengage

[)t e'rnli 'w Speet :\ccelerate
Decelerate

! cr 7l1(',FI ((,(re t t e

IIT

w it,:{ I I t ie

Off Button
I Accelerate Button

Resume Buttong Set Button

I Off

On Button

I Off Button

On ButtonI Oil Accelerate But toni

Brk Set Button

1 OUr 13 it ton

Re)iirt But ton3~~~O .\[je31ut tor

I Uir :3.12 C_ ('i il (i W1r I t i S I t lr n;i I)I 111 11 1 1 1TI Iai

1

D~oscription of m-essages sent:

I Speed Seri'zor.Deterrnine Speed Get the current speed from the speed (,en-
so r

SuneedI.Greater Than Determine if one speed is greater than aan-

other
Speed. Assign Assign one value of class speed] to anot hei
Desired Speed.Increment Increment the value of the dlesired v'ehicle

sj)eed
Th rot tle-Accelerate Set the throttle to make the vehicle accel-I erate
Tlirot t le. Decelerate Set the throttle to make the vehicle le-

erate

th rot tle. Disengage Release control of the veicle throttle

Description of any state lin-itaiuns:

The cruise control object must initialize in the "~Off" state.

List of exported exceptions:

5 None.

List of exported constants:

None.

3 Rteuse considerations:

I III 01bjecc is app1lication specific.

Button Class

Textual Description:

The buttna class models a plhysical button. When the button is pushed, a

3 signal is sent to some receiver. In this application, the receiver for all button objects

is tie cruise control object.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures 3.13 and 3.14.

Description of messages received:

None.

Description of messages sent:

I Signal Signal the receiver that the button has been pressed.

Description of any state limitations:

None.

I List of exported exceptions:

3 None.

List of exported constants:

I Nor,.

3 List of cbjects in the class:

U * On Button

* Off Button

U * Set Button

* Accelerate Button

3 * Resume Button

1 .3-34

I

BI 'i'
ha

PressedRelease

Reeiher

Figlire 1.13. But ton: S)I ruict ire ira

3 -1

I
I
*

SignalsI
I

Figure 3.14. Button: Interface Diagran

Note: In each case the receiver of the signal is the cruise control ohject.

3 Reuse considerations:

I This object is potentially reusable.

I
I
I
I
I
I
I
I
I

Speed Class
Textual Description:

I This class describes objects which represent the speed of the vehicle. Thils claiss

Is, based on the integer class.

Structure Diagram and Interface Diagram:

See figuires 3.15 and 3.16.

SpeIa pe i-i
10

Figure 3.175 speed: Struicture Dilfagrm!

State Transition Diagram:

See fiurep :3.17.

3 Description of mnessages rece-ived:

't~!I'liarI 'Fest If oine speed is rreater 1.han aInother.

3 I, iren tilt In1crement11 thle value of thle spwvd.

A\-j ITICIeit A s I QTI (e valT I(I p e I If't her. M (I l1 II(I

3 :7

I
I

IGreater
Than

Increment

Assign

U speed

I Figure 3.16. Speed: Interface Diagram

I
i

value
less thanI \lax-Speed

~increment

value
equials

\lax £ peedl

Sin crernent / colustraint error

3 Figire :3. 17. Speed: State Trausi IsIn |iairaII

I
I-'

I
I

Description of messages sent:

* None.

3Description of any state limitations:

An object of this class max' have a value in the range 0..100.

I List of exported exceptions:

Constraint Error An attempt was made to increment a speed
object which was at its maximum value

List of exported constants:

[axirnuni speed.

3 List of objects in the class:

I
* Current Speed

3 e Desired Speed

3 Reuse considerations:

This object has limited reuse potential.I
I
3 Entries wotild also be placed in the ol)ject encVclope(lia for tie reniainlu,,

tli o)jects in the object list.I
I
I
I
I

H. JOPPIfl to an Objct-OrI'cntcd Dcsin

I The niodel pioduced by the OQA method maps directlyv into a Booch-fl% ivd

olkject-oriented design. Any high-level algorithni is documented, as are all cht,,cs)I

olijcts in the problcrn space. W'ith the p~ossible exception of certain external ('ut 11' Ic>.

('a'ch ciasq of objects documented in the object encvclopedia will likelY be lmiji uf

tie dlesilgn. Thie class's entry in the object encyclopedia contains thle it!furiuati lou

required to design the object.

Sorn details of the object classes were intentionally ignored H) thle in

liliase. For example, while OOA method identified the messages passetd ct\li

Ohjects. it mfadle no attempt to define the arguments of these calls. The iii-gimi,-'l

I uf)I messages are often at a level of abstraction lower than the class beingl wii cijiuiel.

There1,(fore, cataloging these arguments was deferred uint il thle (Iesi pltar,

Likewise, the nature of the implementation of each class of objects, m): l

3 all tdessed during analysis. Whether objects art concurrent with 01 her 01h)(I

,Inc, suIch implementation detail deferred until design. All objects are put cIIiii ii I3 K u)ICu rreit-on lv efficiency considerations prevent the des~gner fromn act in lk nIple.

mit mlrg lie objects in this manner. It is the designer's responsibility t Icim'lerlli

t he Iriuplenleit at Ion of each object.

Astli, designer defines the software sol ut ion, lie will ii rdor iht ciH, 11< v 'l

I~ ~ ~fi~f Occts and operations to be imiplemnented. For example. if the (clari

U ~ 'I[iojc concutrrenut. he may have to add operations to Initialize and terlim~Ill

h 'c.I'llu (let ails of the solution wvill also 1)reselit miore objeWct cls.e 1t an \

3 lucllilieuited (hlurimng analysis Iii practice, information musit i1W collected ainIi

tww)hject clIasses as well. Therefore, the designer may eoniu TIwltere0illtl. <1 nnIK

3 elt (off. and uesimnilar tools to those listed above in docuiilet ng ol jcci lil d,1oii

I I i J lie dein phase.

U
I

The tools and procedures defined in this chapter make up the oh.,e-t orieintel

3 analysis (ooA) method. The domain expert and analyst may use paper and pewiri

to document this information. However, a computer-aided tool will great ly assist

U the analyst in creating and reviewing the documentation. Such a to(l wouild also,

give more of a hierarchical nature to the entries in the object encyclopodia. Tbw

requIirements for such a tool are outlined in chapter IV. The OOA meti, '11 is on,0'(

fully evaluated in chapter V, when the method is applied to a more mP rehen.i'

requlirements analysis problem.

I
I
I
£
I

I
I
I
I

I

I
• In ;I

9 IV. Recquirements for an Object-Oriented Analysis Tool

The previous chapter suggestedl the creation of a software tool to manalge hie

products and p)-ocess of the object-oriented anialysis method. This chapter descrilw.,

a .swr interface, and set of guidelines for the design of such a tool. The purpose d

his dlescriptl l<i is to show the potential benefits the 00A met hod can receive froim

aiioinatedl suipport. Alt hough some of the tools from the 00A mnethol are ulsedIi

tins descriptii, this chaptei is not an example of the OA rnethod -a coiiiphil I

Apuplication CIan example problem is presented in chapter 'V. A more complelc

sjeihcatioii :mnd design of the OGA tool is recommended as a fut tilre proje0t

I I. / Frame cwku for 00A1 Tool Description

The 01 ic-t 0riered :\nalvsis Tool contains many charaicteristics ofat
> Iijpti *SY,1((lYS). The tool is aimed at providing Support to thle analvyst In 1111s

3 :11 1f~lnip, to fUilte Software nmy tireinents. The proposet IOA tol JoeV

ucs) iioi 1!! 1i fit the dlefinition of a "true" DSS-.A typ~ical DSS contain>, >()III(,

3 ~ !(4t oflt)ci ti at d1raws upon a dat a 1uase of informatilon i order to () nrov i

Piaitittivc:-~stnet hch will assist a decision maker.. At the begirmin2- (d 11w

I AoItware rey'iineniwrts analysis activity, there is little inifornmat ion that would 1i [

neistn I ii ilase (ot her than a librarv of r-euSab1ole I onpOIIIItienS) anll no I hr51 in

I iIlfh o nvV ionthe informiat ion t hat does exist. I'lie 00A\ niet hod is ni

I Pl'IOhi()CCY, t han an aatic one(- guided by heii rist cs Inlsi cad 1 1

\ \et hhe-~. I) s framlework ciii he usedf to idenitifY thle nature ofhle (00.\

S~i~e;wde (arlsori hiii\' hirI-)05et a hr~5-~~e~i~fi '

I ~ ~ ;jIiZ t 1l((.fd D,f) '11,1. approa~ch riuisr I hit cm~iith('r.1t ill

,;IUc ;!1 [1c~ ~ II(rv ,1.;1 " 1 o 1" h 'II

I
I

n. s uations communicate information about the problem to the user. often usilig a

3 report or graphical format. The DSS should provide a set of operations to maniipu-

late the information in the representations. Alernory aids assist or guide the user iII

3 applying the operations on the representations. The control mechanisms enable the

user to direct the session with the tool, and get from one set of representations to an-

I other [Sprague and Carlson, 1982:96]. The ROMC principles guided the description

of the OOA tool user interface presented here.

" tie chapter uses two previously describe tools, the concept map and sto\

3 board, to present the OOA tool description. The concept maps identify the elements

,' I [I(object-oriented requirements specification produced Iv the O0A met hod. "h,

3 maps also Identify the information (memory aids) upon which a specific eleme(t o,

the specihcation depends. The storyboards describe a proposed uter interface for

the OCA tool. Thev were created to describe the automated support for develop-

ig each of the elements illustrated in the concept m.aps. The development of each

3 storvboard considered the representations, operations, memory aids, and control

1medCiallisms appropriate for that step in the OOA method.

;.2 -~d~RIonship.s Amon. .Xodds in the Ohject-Oricn/f-d :l ysis .IhOhod

\laiv of the steps in the Object-Oriented Analysis (OOA) method are has ,,

3 ,,l the wot: of previous steps. With this in mind, one can iraw a set of cowvp,'1)1

i1,ips reflect inrg these relationships among the models deve!oped in the niethoI.

I ~Fgii re 1.2 shows a concept map describing the overall OOA method. .X As -

flril, ili tliw previot , chapter. the 00A rmiethod has two major steps: captiriig, t ,

- 0 f't areF reqir entents 'rom ihe domain expert, and st ricltiring those reqtlnreiiie:o

into frT suitable for design. lhe later process of ob.ioet-orienled design is Iase

[11 .~aitlv ONt this 1 r1 ctutred epreselitat liol. tholigh tle initial tot le l t , a t!

!, rvl , s mlaV also, inflence tlie desi.ner.

11I, ht lli,'unts of thle initial. tin111 rlctire, 1 odel ,,f tie rt ,f ei l a eliii

1-2

IO
Meho

consists of

3e s b a s e deo p r o d u c esl

pr d c sS r c u e

3 ~~Fi gim r -1.I Concept Miap: 00A MeIthIodI

1 3

cosssoIossso r
Intutr(bad

TetUl oe

1 Figure4.2.eCocepteMa:tCaptuingitheReof ireents

I trated in figures 4.2, 4.3, and -1.4. These maps point out some of the relationships

aniion- the different models. For example, the event/r os lIisaedote

I domain expert's concept map and storvboards, while the concept map is veihied-

cgaint. th even/response list. An OGA tool can assist thle analyst in applNiwhI , llttl v n li;Ii
method steps by Informing the analyst of these relationships among models. wid

providing~ a en fdsling previous Information upon which a specific niorll is

3 1' liTe mIiodeMs developed In the second~ step of the 00A. metho d1(isp1lay a sin iki

rel i arice uiponi p reviouis models. For exam ple. thle external Interface Ii a grainis Is lla se

I ~ ~(l)oth thle dlomiain expert's conlcep~t maps andl the event /resp)onse lis!. Figures I

a ri 1 .6 dloscri be the primary relation)ships bet ween) these models in firlther (let l

CocpIeife is
MaIvet

Repos
Is

cotan

EntitiesRActioon

3 ~ ~ r often ote

Objects 0 between -zr fe

Messages

I.igiire 4.3. Concept Map: Th'le Unstruictutred Concept Map

I-

Isdo vn- bsdo tr
CocpIepnebad

Is
cotan

become bcm

MesgeUo

I Figu~~~~~re 4..c onetMa:ivevn/PsoseLs

I]OjcsRe

Uine4.CnetMp h vn/epneLs

Itutrd cnan
co t i sM dlIl g -e e

/CnanIDcmP
Exera
inefc

Iarr ae o ae i
obet bsdoIocp

Response

Figure 4.5. Concept Map: Structuring I V P~ilnirements

I contaedni

baedo Messages

bae of l

StutrI'
DigaIeta nefc

baeIn if

baedo
StutrlIae i

Relast

cotisbsdo
bae]o

J' iguire 1I.6. (Xn cepft MIa p: 1he Object Eri cvcloped ia

-.. Gcincral Rcquirements for an Objcct-Orintcd .4nalysis Tool

I First and foremost, the OOA tool should be "user friendly". This is especially

Important in light of the fact that the domain expert may be the one using the

tool to enter initial concept maps, storyboards, and event/response lists. Therefore.

the 00A tool should run in a graphical windowing environment, with user inpill

allowed through menus and a mouse. Use of an existing windowing environment also

3 pruvides the user the ability to customize the size and shape of the tools winlow>.

This Rtexibilitv enhances the tool's ability to support a range of user preferences.

Because the models developed durihg the course of analysis depend on previous

representations, the OOA tool should enable the user to view ap 1 edit multiple views

I simultaneously. Therefore, the windowing environment should enable the user I

open multiple windows with different models of the requirements.

To assist the novice user, the system should provide a reference to context

sensitive help windows. This help should be of two kinds. It. should: 1) provide

assistance on the use of the OOA tool itself, and 2) suggest guidelines for applying

the steps of the OOA method. Also, the OOA tool should be consistent in the

presentation of screens and menus. Menu selections that are present, in all windows

(e. g. flelp) should be positioned in the same relative position in each menu. Tllis

poiqioning will minimize the 'learning curvc" of a now user.

I Occasionally, the analyst may have a random thought about a topic not directlY

related to the nodel he is currently working on. Therefore. the OO tool sliltI

have a notepad capability to provide an easy way to capture these thoughts. I'he

I notepad may also be used to record any difficulties encouintered while using the ()O.\

t Jol.

Iri cass where there is overlap of informuation among different models Hi Il,

0)(;\ ri~ ithod, the OA tool should ensu re that the different represenatiouis at,

I (coIstoit,. Fur example. the O0A tool could ensure that each class of obj,, irtH
41)

I

I
I

tle list of potential objects is documented with an entry in the object encyclop,,i;i.

Other potential cross checks the tool could perform include:

I verifying that each event in the event/response list has been ca'aloged with a

message sender and receiver.

I ensuring that each message in the list of messages shows tip on the intrface

diagram for some object class.

* confirming each message sent or received by a class of objects shows uip (w

both the interface diagram and the textual oescripiicn for that class.

* verifying that the list of messages received by a particular class includes each

Iof the messages identified in other classes as being sent, to that object.

I The general requirements cataloged above (along with the concept. maps lPre-

sented earlier in this chapter) are sufficient to carve out a set of storyboards whicl

illustrate the --look and feel" of an OOA tool.

I 1.,J Storyboards of the Object-Oriented Analysis Tool

3 The relationships between model elements shown in the concept maps an,

discussed in section 4.2 furnish insight into the requirements for a software tool to

3 assist in applying the OOA method. Each step in the OOA method can be supported

through a menu choice of the OOA tool. The tool will assist the analyst in each step

3 by providing access to the information that, each step is based on.

'The initial screen of the OOA tool is shown in figure 1.7. This window has

a iniber of characteristics that are common to other windows presented L t lie1

OOA tool. W indows of this nature can he constructed vith a number of differeit

wiln(lowinig systenis: the format shown is characteristic of Microsoft Windows foi

lhe IBM P(class compu ter. (licking the mouse on the small box in the ii,

left corner of the window presents a mnuii of window commands, such as resizi i.

I

I

I
!

moving, or closing the window. By closing the main window, the user conchdh'

a session with the OOA tool. The arrowed boxes in the upper right hand corner

allow the user to expand the window to cover the entire screen, or to shrink tli

i window into an icon. Other menu choices are presented in rows across the to) of

the window. An exclamation point at the end of a rnienu choice denotes an aci io

Iwhich takes place immediately when choice is selected. A menu choice lacking the

t trailing exclamation point will request more information from the user before 1h,.

action is taken. Windows may also have scroll bars to move the window ovr

larger underlying drawing or text.

The initial screen of the OOA tool integrates all steps of the OO.\ met lid.

FVrom. this display, tHie user has access to the models developed in hoth step one

(Capture Requirements) and step two (Structure Requirements) of the OOA method.

I Fron this window, the user may also load an existing project, or clear the tool fhr

a new pr.)j 'ct. Commands also allow saving the project, printing all models and

S(oclinentation, and access to the notepad and help functions.

1 4... I C'apturing Software Requircncrts. Figuzre -1.8 displays the menu choices

f,,r tools which support capturing the software requirements under step one of the

OOA method. It the user selects the Text! option, he window shown in figure 1.9

is created. This window, and similar windows described later, do not take up ili

entire screen. This allows the user access to the main menu. and thus other nio hl.s

ldcveloped (hiring the analysis. Of course, the analyst may always click t he mouise 011

Ihe "tp" arrow in the box in the upper right corner to expand the window to cover

ti e elt ir(, scrI'en.

From the ('CpthreJrqls menu. the user may also develop and/or view a con'iicpt

i i a ev fig ire 1.10). storvboard (figure .1.11). or evvtti/response list (figure 1.'2.

I
I

i-IlI

B OGA Tool

CaptureRegts StructureRegts LoadProject New! SaveAll!

PrintAll! Notepad! Help!

FisiIh ansre fteOAto.Tewno omtadcrnnso hswno r.smlrt

fhs the i alosen the er toL. nxnL The window focrmt enr scnand fhrit window r imilan s

Thesecnd ndIiird lines of the window display mnenu choices that may he, selected with the mouse, AnY I cit i
ndig i anexclamation point initiates an inuediate action, while those without the exclamation point pt-stlt
,moter ien ofchoices. All windows have menu options Note pad! and lIbip!. These oipions allow the userI.
ace., anotpadtorecord random thoughts while using the tool, and context sensitive help and guidelines d itt

(heNlsernandOOAmethod.

Hit mimeucnains thle following options:

" ,aptsir,1?qts: Present the "Capture Requirements' menu (see figure 4.8) to performi act ions iii St, 11'.-1
lie 00A tiethod.

"Str'ictiir'I?.qtsi: Present the "Structure Ro-quircmertts' tienu (see figure 1I.11) to perform Actions itn Sit-1 tNit

" I,)dPr~jt: P'resent a list of project narnes that tile user mav load.I* N.V': (' lears thle OOA tool for a new projec-t.

" St A(U Save all aspects of the# project to disk. If no, project was irtit iall.% loaded, the, user will 1)e pu-tor'?
tot- the pt'ji itame.

* l~,tAI,'.'[rint all project do....itnett, ita i tort.

I Figulre I.T. OO.. ITol S-torvboarti: MIain Ti)()[

1-12

I

I
I

1 _I OoA Tool TI14
,CaptureReqts StructureReqts LoadProject New! SaveAll'

Text! Help!

Concept Map!

Story Board!

Event List!I
I
!
I
I

VC,- "U.pture 1,fquiirenents" menu allows the user to make the following hi,-es for step ,ue f th () 0Am, ih h.

* "rt.': Document textual information about the system (see figure .')).

9 Con, Fpt .fap.': Draw a set of concept maps (see figure 4.10).

e Storvboard!: Draw a set of storyboards (see figure .1.1).

* Event List!: Create an event/response list (see figure .1.12).

i Figure -1.8. OOA Tool Storvl,oard: (%pttire Reqitiremenits .CTIII

I
I
1

.1-13

I

OQA Toolt

CaptureRegts StructureReqts LoadProject New' SaveAll!3 PrintAll! Notepad! Help!

Text: ProjectName+ +3Save!. DiscardChanges! Print! Notepad! Help!

I Purpose:

g Constraints (Size, reliability, security, time):

3 Metarequirements:

3 A p i r he 1, rt! ele, tin is -ho-.qn fronrt the *(ipt tire Reqitiretnents" menti. the textua itira t iiripwl i%

SI his, witisiw cintains a template of the textrual inftinat ion that hoiddl be capttur~ frulth ti,-[

xplft I II- Iitial xl pItion 4 the windiiw afllws the iuser to a-ps, lte Mnainr nunl to get .titer itii ryttt di -t

ipt;rj- I hie , rll bar on the right hiandid e 4 the wjtpiw allows the tiser ti r1 thr-mli (he text ,oIIIt, k ,f th e i -ltittn.
f.Ii i mernu hoires are sperifi ti this a itidw:

3 u ase It, iir-rent textual irtfrrrtatittr.

0 i l r~ us, q. 1issard dhangeI III (Ie t,-xttul irifrtttatttt sin- lie last save.

* iwn I l i- textiual informtat iii.

I. , Li. MO. h1fA I-~) I)- t));y1tI: Text Il !nfonrumili jIM

5 QUOA Tool 4
CaptureRegts StructureRegts LoadProject New' SaveAll'5 PrintAll! Notr~ad' Help!

- Concept Maps: ProjectName 43 New' Read AddConcept! AddRelationship! Delete Move

Save! SdveAs DiscardChanges! Print! Notepad! Help'

aonept

U Verified Against Event/Response List

When the ('o)n(ept M~ap! selection is chosen from the "Capture Requirements" mrenu, the concept map % iiil-N
.. pliears. Tis window contains commands which allow he user to draw concept maps. The initial position 4f iw

Sallows (the user to acress the main menu to get other information al~out the project. The bottom line-f.1w i

iv i n I w displays thle other method steps upon which the Concept maps are based. The scroll bar on the bottom iti'l
tight hatol sides of the window allow the user to scrrll through the concept map with a rlik of the mouse i l.

lb h following menu choices are specific to this window:

I *N, it.': Initializes the window to draw a new concept ;nap.

SHtad: Reads a concept map from a file.

* .../d'a'pH:Adi,., a concept to the map. The user is prompted for a label for the concept. anil is illix-I to position lie concept with the moose.

s d1~lumsi! A(dds a relationship between tsA * concepts. The user is ptormteu fir tile label . it

t, lie relatiotiship, and is alloweid to position the ahel with thle mouse.

.I * Jf I h lis selection is used to delete a contcept or relationship. A.fter selecting this opt; nit- lieis-,i 1,
the rui'iie mt the concept or relat iinship to deletei.

* M,7 : I is sele, tin is used to nose a nc~ept. After selecting this option, the user clicks on lie , ,it tI ti roe. iOlin dirgs it to its n,-w locatiii.

* ~' ,': s ae I lie -urrent concept mnap.5 ~ ~ ~ A i~I' ~s the -oncePpt map in a dlifferent file. "Ihe uaser is prokmptedi fir the name of the new fil,.

0 isDc Ai !)iscard changes to the con i-ept map sitnice t he last save.3 P-* I ' i rt it, iurrent -wncpt Trial.

I 1Figie 1 10. 00A)().\ 10) t-yrdt: (ttticept Maips

l1-15

3 QUOA Tool +

CaptureRegts StructureRegts LoadProject New! SaveAll'

PrintAll' Notepad! Help!

-1 Story Boards: ProjectName4

New! Read Save! SaveAs DiscardChanges' Print!

Notepad! Help!

... (Drawing Commands) ... I

Whmtheltl/'ae. selection is chosen fromt the "Capture Requirements" menu, the storyboard window appoa;ur.

Ibhis window connicrts to a drawing package which allows the user to draw free-format graphics for storyboard.. The.
miliial positin of the window allows the user to access the main menu to get other information about the pnuj-t.
lI ol liar On lie bottom and right hand sides of the window allow the user to scroll through t he conucept twtj
if Ih a cli k of the inouse button.

fiiliwngmnu (hoices are specific to this window:

*N, S ' nilt i lite window to ([raw a storyboarM frame.

I ~ ~ * U I[ails a storyboard frame from a file.

S .. a%, -t he current story board frame.

.1 1siI': Save thle story board frame in a different file. The user is prompt ed for thle name oif t lie trw I iI,

* Ir~q'j~r,~i!:Discard changes t,, the storyboard framie sincre t lie last save.5 * I nfl.':Print thle current storyboardi fram_

e l),sis r,j (',)nind5: Drawing corruianils Spe-ific Io anl existing free-formnAt drawing prigraui will I.,m5 I pleI,

Flji 1. I] 00OA ITool SI orvIboard: St orvi oar rtl t!idm

I - 16(

Capureegt Stuctre~gtsOQA Tool

Capureeqt Stuctre~qtsLoadProject New' SaveAll!

PrintAll! Notepad! Help!

I -1 Event/Response List: ProjectName 4

Save! DiscardChanges! Print! Notepad! Help!

Event 1:

Responsel:

5 Ba sed On: Concept Maps, Story Boards

WIie-n the Ei'r nt List! selection is chosen from the "Capture Requiirements' menu, thte Event/ Response L ist %I II-U 1,,w appears. This window contains templates for entering events to which the software must respond, and ihciv

orresponding responses. The initial position of the window allows the user to arcess the main menut to g,-t i lwr
nif,,rmation about the project. The bottom line of the window displays the other method steps upon whii Ithew
venlt/response list is based. The scroll bar on the right hand side of the window allows the uiser to scroll tlii'icli
lIte list with a click of the mouse buitton.

li f-:~v nieflh choices are specific to this wi-idow:

*Sir r!: Save t lie current concept map.

* [i~ia ~i~~inq'!;Discard changes to the ,oncept map) since the last save-3 - Print!: lriiit the c-urrent concept map.

V j-'ire *.2. 00A Tool SI orvlboar(I: FEvent /Response L~ist

1I1

I

1 4.1.2 Structuring Software t&quircrnernts. The StrucureReqts menu (see fig-

ure .13) provides a number of tools which can assist the analyst in adding struct l,

to the requirements to make them sufficient for the object-oriented design plls,.

F,n this menu, the user may choose to draw or view an external interface diag In

see figure .14), decompose any" high-level algorithm (see figure 4.15), list potent ial

1 ob~jects and classes (figure 4.16), list message senders and receivers (figure 4.17).

edit or view entries in the object encyclopedia (see figure 4.18). Each of these options

3 is discussed further in the text corresponding to the storyboards in the figures.

I
I
U
I
I
I
I
U
I
I
I
It-,

I

I
I
I

I
CaptureReqts StructureReqts LoadProject New! SaveAll!

PrintAll! EID!

High-Level Decomp

Object ID!

3 Msg Send & Rec!

Object Encyc.!I
U
I
I
3 [lie "Structure Requirements" menu allows the user to make the following choics for step two of the OOA tu,tI hI,

* EID': Draw an external interface diagram (see figure '1.1,-).

Ili gh.Ltv I D~comp!: Draw a stnicture diagram depicting the decomposition of the high-level algorith I -ii

figure 4.15).

0),Oct ID': Eiter a list of potential objects in tlie solution of the system (see figure 1. 16)

o .* fsg .Send - Ilec!: Document the senders and receivers of messageq corresponding t o events in tlhe -vI 1i-t

Ise" figure 1.17).3 * O)'t E~.'0,),, .. : Create entries in the object encyclopedia (see figure 4.1 A).

Fligut re4. 13. 00A Tool St oryboard: St requ ire [(11ireTneli Netili

I
I

LI 9

I

I
I

9I Too

CaptureReqts StructureReqts LoadProject New! SaveAll!

3 PrintAll! Notepad! Help!

T External Interface Diagram: ProjectName t 4

I AddEntity! AddLink! Delete Move Save!

DiscardChanges! Print! Notepad! Help!

B rake Cruise Button
Control ssignals"

Based On: Concept Map, Event/Response List
I

When the EID! selection is chosen from the "Structure Requirements" menu, the External Interface Diagram windo%%
appears. This window contains commands which allow the user to draw the external interface diagram. The initial
position of the window allows the user to access the main menu to get other information about the project. The
bottom fine of the -;ndow displays the other method steps upon which the external interface diagram is based. Th,-

scroll bar on the bottom and right hand sides of the window allow the user to scroll through the diagram with a

click of the mouse button.3 IThe foUowing menu choices are specific to this window:

a AddEntity!: Adds an entity to the map. The user is prompted for a label for the entity, and is allowed to
position the concept with the mouse.

* AddLink!: Adds a link between two entities. The user is prompted for the label to attach to the link, and is

allowed to position the label with the mouse.

* Delete: This selection is used to rd!,!te an entity or link. After selecting this option, the user clicks the mouse
on the entity or link to delete.

a Move: This selection is used to move an entity. After selecting this option, the user clicks on the entity to

move, then drags it to its new location.

* Save!: Save the current external interface diagram.

* DiscardChanges!: Discard changes to the external interface diagram since the last save.

3 * Print.': Print the current external interface diagram.

I Figure 4.14. OOA Tool Storyboard: External Interface Diagram

1 4-20

I

I

I -OCA Tool 4 4]
CaptureReqts StructureReqts LoadProject New! SaveAll!

PrintAll! Notepad! Help!

-1 High-Level Decomposition: ProjectName f i

AddEntity! AddRelationship! Delete Move Save!

DiscardChanges! Print! Notepad! Help!

Elevat Aileron

L Based On: Concept Map, Event/Response List

I When the High-Level Decomp! selection is chosei, from the "Structure Requirements" menu, the High-Level De-
composition window appears. This window contains commands which allow the user to draw a structure diagrami
depicting the decomposition of any high-level algorithm in the system. The initial position of the window allows the
user to acr-ts the main menu to get other information about the project. The bottom line of the window dipl,L,
the other method steps upon which the decomposition is based. The scroll bar on the bottom and right hand sides
of the window allow the user to scroll through the diagram with a click of the mouse button.
The following menu choices are specific to this window:

s AddEnttty!: Adds a new entity to the map. The user is prompted for a label describing the entity, and is
allowed to position the bubble with the mouse.

s AddRelatianship!: Adds a relationship between two entities. The user is prompted for the label to attach to
the relationship, and is allowed to position the label with the mouse.

e Delete: This selection is used to delete an entity or relationship. After selecting this option, the user click.3 the mouse on the entity or relationship to delete.

e More: This selection is used to move an entity. After selecting this option, the user clicks on the entity t,,
move, then drags it to its new location.

* Sare!: Save the current diagram depicting the algorithm decomposition.

s Disca."dChanges!: Discard changes to the diagram since the last save.3 a Print!: Print the current diagram.

3 Figure 4.15. OOA Tool Storyboard: High-Level Algorithm Decomposition

3 ,4-21

I

I
I
I
I -I °0~OA ToolI I

I CaptureReq~ts Structure}{eqts LoadProject Nev! SaveAll!

PrintAll ! Not epad! Help!

3 --I Poteutial Object List: ProjectName 4 4
Save! DiscardChanges! Print! Notepad! Help!

Cruise Control

ft Throttle Control

5Speed
Current Speed

5 Desired Speed

3 Based On: Concept Maps, Event/Response List, EID

When the ObjectlD! selection is chosen from the "Structure Requirements" menu, the Object Identification window
appears. This window allows the user to enter a list of potential objects. The initial position of the window allows
the user to access the main menu to get other information about the project. The bottom line of the window displays
the other method steps upon which the object identification is based. The scroll bar on the right hand side of the
window allows the user to scroll through the list with a click of the mouse button.
The following menu choices are specific to this window:Iw

" Save!: Save the current list of potential objects.

* DiscardChangei!: Discard changes to the list since the last save.

" Print!: Print the current list of potential objects.

£ Figure 4.16. OOA Tool Storyboard: Potential Object List

I

14-22

1

I
I
i
S

OQA Tool 4

CaptureRegts StructureRegts LoadProject New! SaveAll!

PrintAll! Notepad! Help!

-Message Senders and Receivers: ProjectName 4 4

Save! DiscardChanges! Print! Notepad! Help!

Eventl: The On button is pressed.

5 Sender:

Receiver:

I E2: The Off button is pressed.

I Sender:
T

Based On: Event/Response List, Concept Maps

External Interface Diagram, High-Level Decomp.

When the Mfsg Send ' Rec selection is chosen from the "Structure Requirements" menu, the Message Send'r., anlIReceivers window appears. This window allows the user to annotate each event in the event/response list with a
flame of the sender and receiver. The initial position of the window allows the user to access the main menu t,, -- t
,ther information about the project. The bottom line of the window displays the other method steps upon whiti
tile identifieation of messages senders and receivers is based. The scroll bar on the right hand side of the %%indiw
.dlows the user to scroll through the list with a click of the mouse button.
[he f,,llowing menu choices are specific to this window:

* Sate!: Save the current list of message senders and receivers.

e DrsrardChanges.: Discard changes to the list since the last save.5 * Prtnl.': Print the current list of message senders and receivers.

Figure 4.17. OO,\ Tool Storyboard: Message Senders/Receivers

1-23I

I
I
I

Object Encyclopedia .

New! ReadEntry StructureDiagram! InterfaceDiagram!
STD! Delete Save! DiscardChanges! Print! Notepad! Help!

3 ClassName

Description:

l State Limitations:

Operations Provided:

3 Operations Required:

Exceptional Conditions:

3 Exported Constants:

Objects in Class:

Reuse Considerations:

Based On: Concept Maps, Event/Response List,

3 Story Boards, Object List

When the Object Encyc.! selection is choseh, from the "Structure Reqc:u:.ziients" menu, the Object Encycl-[,-dia
window appears. This window contains commands wh.ch tiiow the user to create entries in the object encyclopedia.
The window itself contains the tpe.tual information describing aspects of the class of objects.

The following mc..au choices are specific to this window:

3 a New!: Create a new entity to the object encyclopedia.

* ReadEntry: Reads an object encyclopedia entry a file.3 * Structure Diaqram!: Allows user to draw a structure diagram for the class of objects (see figure .4.19).

* lnterfaceDiagram!: Allows user to draw an interface diagram for the class of objects (see figure 4.20).

* STD!: Allows user to draw a state transition diagram for the class of objects (see figure 4.22).

* Delete: This selection is used to delete an entry in the object encyclopedia. The user is prompted f-r ih,
name of the entry to delete.

Save!: Save the current object -ncyclopedia entry.

• Di.icardChangrs!: Discard changes to the object encyclopedia entry since the last save.

* Prtnt.': Print the current entry of the object encyclopedia.

3 Figiire 1.18. OOA Tol Storyboard: Object Ericyclopvdia

I
*I-2 II

I - Object Encyclopedia

New! ReadEntry StructureDiagram! InterfaceDiagram! STD!

ObjectList! Save! DiscardChanges! Print! Notepad! Help!

3 - Structure Diagram: ClassName *

AddEntity! AddRelationship! Delete Move Save!3 DiscardChanges! Print! Notepad! Help!'

5 Based On: Concept Map, Object List

I
When the StructureDiagram! selection is chosen from the "Object Encyclopedia" window, the Structure Diagram
window appears. This window contains commands which allow the user to draw a structure diagram for a class
of objects. The initial position of the window allows the user to access the object encyclopedia menu to get ,ther
information about the class of objects. The user may click on any of the components or attributes that make up th,
class, and a window with the structure diagram for that class will appear. The bottom line of the window disl;L'y

tlie other method steps upon which the structure diagram is based. The scroll bar on the bottom and right ht.I
ides of th- window allow the user to scroll through the diagram with a click of the mouse button.
The following menu choices are specific to this window:

* AddEntity!: Adds a new entity to the structure diagram. The user is prompted for a label for tit iy.

and is allowed to position the entity with the mouse.

e AddRelationship!: Adds a relationship between two entities. The user is prompted for the label to attach t,,
the relationship, and is allowed to position the label with the mouse.

e Delrte: This selection is used to delete an entity or relationship. After selecting this option, the user ,lit k
the mnouse on the entity or relationship to delete.

* .m,,rf: This selection is used to move an entity. After selecting this option, the user clicks on the ett
move. then drags it to its new location.

* Sae.': Save the current structure diagram.

e DziscardChangs.': Discard changes to the diagram since the last save.

* Print.': Print the current diagram.

I Hriglre 4.19. OOA Fool Storyboard: Strictuire Diagram

1-25I

,I

I

I -1 Object Encyclopedia *
New! ReadEntry StructureDiagram! InterfaceDiagram! STD!

ObjectList! Save! DiscardChanges ! Print! Notepad! Help!

-I Interface Diagram: ClassName 4
AddEntity! AddRelationship! Delete Move Save!

DiscardChanges! Print! Notepad! Help!

I

IT
3 Based On: List of Message Senders/Receivers, Object List

I
When the InterfaceDiagram! selection is chosen from the "Object Encyclopedia" window, the Interface Diagrai,,
window appears. This window contains commands which allow the user to draw an interface diagram for a c'la.
of objects. The initial position of the window allows the user to access the object encyclopedia menu to get olher
in formation about the clans of objects. The user may click on any of the classes receiving metssages from this -ha.
and the interface diagram for the class will appear in a new window. If the user highlights the name of an incoining

message, a window will open with a list of classes that send this message (see figure 1.21). The bottom line 4 tIC
vindow displays the other method steps upon which the interface diagram is based. The scroll bar on the ,,t t,,,
and right hand sides of the window allow the user to scroll through the diagram with a click of the mouse hutt,,n.
I he following men,, choices are specific to this window:

" AddEntity!: Adds a new entity to the interface diagram. The user is prompted for a label for the entity. -,l
is allowed to position the entity with the mouse.

" .4ddRelationshtp!: Adds a relationship between two entities. The user is prompted for the label to at t, ht,,
the relationship, and is allowed to position the label with the mouse.

* DIlcte: This selection is used to delete an entity or relationship. After selecting this option. the usr ,.,ks
the mouse on the entity or relationship to delete.

* .Mve: This selection is used to move an entity. After selecting this option, the user clicks on the enti('ty,,
miove, then drags it to its new location.

e .usd: Save ihe current interface diagram.

*)isrardChanqr.!: Discard changes to the diagram since the last save.

* Print.': Print the current diagram.I
Figlre 1.20. OOA Tool Storyboard: hiferface Diagram

I1-26

I -Object Encyclopedia f Li

New! ReadEntry StructureDiagram! InterfaceDiagram! STD!5 ObjectList! Save! DiscardChanges! Print! Notepad! Help!

-1 Interface Diagram: ClassName 4I AddEntity! AddRelationship! Delete Move Save!

DiscardChanges' Print! Notepad' Help!

Based On: List of Message Senders/Receivers, Object ListH

Whle n an incoming message is highlighted with the right mouse but ton on the interface diagram, a winl~ i A' I''
" Itli a is t of -lasses thfat send the message to this class. The user may likewise highIijht oin e if these , la- n5 and a new window will appear with the interface diagram for the class.

1H gtre 1.21. OOA Tool Storyboard: h1ihlight ing 11147111i1g N1eVS1ag(e

1-2 7

Object Encyclopedia +3 New! ReadEntry StructureDiagram! InterfaceDiagram! STD!

ObjectList' Save! DiscardChanges' Print! Notepad! Help!

I- I State Transition Diagram: ClassName 4
AddState! AddTransition! Delete Move Save!3 DiscardChanges' Print! Notepad! Help!

I jBased On: Concept Maps, Story Boards, E/R List

\\lmen the S TI)! "selection is, chosen from the "Object Encyclopedia" windlow, the State Transition Diagram ns

,:pears. i nd-w cotan commo-ands which allow thle iser to draw a state transition diagram for a 1-, -
iJects. The initial position of the window allows the user to access the object encyclopedia menlu to g,-t -(1-1

ifortiiatpi about Ilie class of ohjects. The bottom line of the window displays the other method steps umo ,Ili1

tOw ,t4t transitior diagram is batied. The scroll bar on the bottom and right hand sids of the windo'Iw all 13 i-er it) scroil through the diagram with a click of thle mouse button.
I fo '1 lK lo w fing l I liices are specific to this window:

* Iidr i' ':Adds a new state to th,- diagram". The uiser is prompted for a label fir the state, and is l

to, p,-sit ion thle state with the mouise.U * I 4 ir n~ti i!:Adds a transit ion b~etween two states. The uiser is prompted for thle labe-l t4) at ta i.- t
i ramisim mimi and1 is allowed to position thle label with tile moulse.

L~ii:[hlis selection is used to ielete a state or transition. After selecting this opt ,- hiiser ,h. k_.-

moosej onf time state omr transAition tin dlelete,

a* V -Ilii selection is used tim repoisitiomn a state. After selecting this opimfir, tie user -ic-ks)in iti i -ii

liOsw n drags it to its new location.

* 'siI "ave t ie murm-rent state transi iliagrain.3 . fur ' i nr 5ri' : Discard (hanges 11) the dhiammIA sin, e the iasi sAve.

* !''u,: Frint thm ciirrent dliagranm

I Iii~hgur(1.22. 00O o ol ju ti toryoar-d: State Ir1;l imi -itra;rti

I-2I

i'lie- v-.iniow providing access to the cbject encyclopedia is iiiIIpie In thlat it

akes lip the entire screen. This allows more room for the suib-windows that cani
he openedl within the object encyclopedia. Again, the user has flexibility in llow lic

'.'ars thzese windows displayed on the scieen by clicking on the appropriate wiiiio-":

3 commands.

'Fle object encyclopedia windlow gives the analyst tl'e following capabili irs-1:

*-Adding textual information. This is done through the main window of the3 object encyclopedia.

* Drawing a structure diagramn for the, class of objects (sec figure 4.19)).

3* Drawing art Interface diagram for the class of obiects (see figure 41.20).

3* D~rawing a state transition diagram for the class (see figuire 4.22).

A\ major benefit of the 00A tool, as identified at tie end of the prcv-i(uIS

chapter. is to providle an ordering to the entries in the object encyclopedia. This.,

Iacconmplishedl through the structure and interface diagrams. If the analyst cllclks

Thle mouse on a class of objects Ii either of these diagrams. the 00A tool will lu id

lihe ob~ject enicyclopedia ent rN for that c lass of objects. If the (class of objects (Ii &s

not vet have ani ent rv in the object encyclopedia, the user will be asked if hec wint

toI start such an ent rv. This capability of clicking on objects or classes from w

-Iriict ire or interface dliagrams allows the user to traverse the object eT1N-C 1c1) (di tI

ciut ics Ti a hierarchical manner. The analyst can thbus load thle highest level ohic .e

aIl Ii ra verse Iirot igh tihe diagrams to view lower level ,lasses.

IIthe cwicept maps and storyboards Tin this chapter de:scribe a tool to assist Il

t!ItnaiIl e'xpvrt aind/or anialyst iii applying thle object-oriented , nalv-sis miethlod. I li>

1Pol wouild ;d-) provide a ineais of' viewing tItlie(nit ries In) I ie obJecC't(' e0Icviplia Mi

12(1

I V. Vtlidation of the Object- Oriented Analysis Method

3 t'he(conicep)ts proposed in this thesis as an Object-Oriented Analysis MetlliO(

calhe suhst aiit ated by applying the mnethodl to a sample analysis problem. Tl s

3 chapter jut rodiices this sample problem an(1 discusses thle application of the niciliho

to ihe prob~lemi.

1 The results of applying the OGA method to the sample problem can be anl-

5 alvzed froii a number of perspectives. The results will first be compared withI the

,()als of t lie 00A\ method identified in chapter 111..Also. tilie method will be COtM-

3 l)pared lto thle results produced by two other analysis met hods proposedl as a preen F (oU

t00QD.

*I Araly. is -4' ob~cm Dec.,riptiol

I ~ ~~The example problem uised to evaluate the 00A method is one which eire

lie analysis of a typical elevator control system. The problem description, taken froim

LAoiirdori I 9. was first used Ii a, 1986 workshop sponsoredl by the Association od3~C omlpuit ing Machinery. Thle following paragraphs out line the problem.

I' hle general requirement is to design and(implement a program to sched-
ii e and control four elevators in a building withI 10 floors. The elevators3will be uised to cadriv pt 1);t. from one floor to another in thle conventional

Li//c Ur~:The program shiould(sclied ile the eleva tors efficientlv arito

rvasomia)lv. For example, if someone suinimons an elevator by pi ishilri
lie down hutton on thle fourth floor. thle next elevator that reaches tilie

ff iirt I loor traveling downi shld(st op at thle fourthI floor to accept till3 ~ ~~passeniger(s). On thle ot her [land , if al mu leva tor has no0 passen)gers (11()
oimttarhimi detinaionrequests), It should park at t lie last floor it visited

nit il it is needed again. A\i levator should not reverse its (irect ionl of

ravel ni1t il its passengers who want !o travel iii its current (hireet iol
have reaiehied their destinationis. (As we will see below. thle progratin

I
cannot really have information about an elevator's actual passengers;
it only knows about destination button presses for a given elevator. For
example, if some mischievous or sociopathic passenger boards the elevator
at the first floor and then presses the destination buttons for the fourth,5 fifth, and twentieth floor, the program will cause the elevator to travel
to and stop at the fourth, fifth, and twentieth floors. The computer and
its program have no information about actual passenger boardings and
exits.) An elevator that is filled to capacity should not respond to a new
summon request. (There is an overweight sensor for each elevator. The
computer and its program can interrogate these sensors.)

Destination button: The interior of each elevator is furnished with a panel
containing an array of 40 buttons, one button for each floor, marked
with the floor numbers (I to 40). These destination buttons can be

illuminated by signals sent from the computer to the panel. When a
passenger presses a destination button not already lit, the circuitry hehind

Sthe panel sends an interrupt to the computer (there is a separate interrupt
for each elevator). When the computer receives one of these (vectored)
interrupts, its program can read the appropriate memory mapped eight-
bit input registers (there is one for eacL interrupt, hence one for each
elevator) that contains the floor number corresponding to the destination
button that caused the interrupt. Of course, the circuitry behind the
panel writes the floor number into the appropriate memory-mapped input
register when it causes the vectored interrupt. (Since there are -10 floors
in this application, only the first six bits of each input register will be
used by the implementation; but the hardware would support a building
with up to 256 floors.)3 De~stination button lights: As mentioned earlier, the destination buttons
can be illuminated (by bulbs behind the panels). When the interrupt
service routine in the program receives a destination button interrupt, it
should send a signal to the appropriate panel to illuminate the appropri-
ate button. This signal is sent by the program's loading the number of
the button into the appropriate memory-mapped output register (there
is one such register for each elevator). The illumination of a button noti-
fies the passenger(s) that the system has taken note of his or her request3 and also prevents further interrupts caused by additional (impatient'?)

pressing of the button. When the controller stops an elevator at a floor.
it should send a signal to its destination button panel to turn off the

I destination button for that floor.

Floor .,rnsors: There is a floor sensor switch for each floor for each ele-
valor shaft.. When an elevator is within eight inches of a floor, a wheel
on the elevator closes the switch for that floor and sends an interrupt to
the coinpiter (there is a separate interruipt for the set of switches in each

5-2I

elevator shaft). When the computer receives one of these (vectored) in-
terrupts, its program can read the appropriate memory mapped eight-bit
input register (there is one for each interrupt, hence one for each elevator)
that contains the floor number corresponding to the floor sensor switch
that caused the interrupt.

Arrival lights: The interior of each elevator is furnished with a panel
containing one illuminable indicator for each floor number. this panel
is located just above the doors. The purpose of this panel is to tell the
passengers in the elevator the number of the floor at which the elevator is
arriving (and at which it may be stopping). The program should illumi-

i nate the indicator for a floor when it arrives at the floor and extinguish
the indicator for a floor when it leaves a floor or arrives at a different
floor. This signal is sent by the program's loading the number of the floor
indicator into the appropriate memory-mapped output register (there is
one register for each elevator).

Summons buttons: Each floor of the building is furnished with a panel
containing summon button(s). Each floor except the ground floor (floor 1)
and the top floor (floor 40) is furnished with a panel containing two sum-
mon buttons, one marked UP and one marked DOWN. The ground floor
summon panel has only an UP button. The top floor summon panel
has only a DOWN button. Thus, there are 78 summon buttons alto-
gether, 39 Up buttons and 39 DOWN buttons. Would-be passengers
press these buttons in order to summon an elevator. (Of course, the
would-be passengers cannot summon a particular elevator. The sched-
uler decides which elevator should respond to a summon request,.) These
summon buttons can be illuminated by signals sent from the computer
to the panel. When a passenger presses a summon button not already
lit, the circuitry behind the panel sends a vectored interrupt to the com-
puter (there is one interrupt for UP buttons and another for DOWN
buttons). When the computer receives one of these two (vectored) inter-
rupts, its program can read the appropriate memory mapped eight-bit
input register that contains the floor number corresponding to the sun-Imon button that caused the interrupt. Of course, the circuitry behind
the panel writes the floor number into the appropriate menlrv-mapped3 input register when it causes the vectored interrupt.

Summon button lights: The summon buttons can be illuminated (by
bulbs behind the panels). When the summon button interrupt service
routine in the program receives an UP or DOWN biitton vectored inter-
rupt, it should send a signal to the appropriate panel to illuminate the3 appropriate button. This signal is sent by the program's loading the num-
her of t he button in the appropriate mnemory-mapped output register. one
for the UP buttons and one for the DOWN buttons. The illumination of

I .5-3U

a button notifies the passenger(s) that the system has taken note of his
or her request and also prevents further interrupts caused by additional
pressing of the button. When the controller stops an elevator at a floor,
it should send a signal to the floor's summon button panel to turn off
the appropriate (UP or DOWN) button for that floor.

Elevator motor controls (Up, Down, Stop): There is a memory-mapped3 control word for each elevator motor. Bit 0 of this word commands
the elevator to go up, bit 1 commands the elevator to go down, and
bit 2 commands the elevator to stop at the floor whose sensor switch
is closed. The elevator mechanism will not obey any inappropriate or
unsafe command. If no floor sensor switch is closed when the computer
issues a stop signal, the elevator mechanism ignores the stop ignal until
a floor sensor switch is closed. The computer program does not have
to worry about controlling an elevator's i'jrs or stopping an elevator
exactiy at a level (home) position at a floor. The elevator manufacturer
uses conventional switches. relays, circuits, and safety interlocks for these
purposes so that the manufacturer can certify the safety of the elevators5 without regard for the computer controller. For example, if the compiter
issues a top command for an elevator when it is within eight inches of a
floor (so that its floor sensor switch is closed), the conventional, approved
mechanism stops and levels the elevator at that floor, opens and holds
its doors open appropriately, and then closes its door. If the computer
issues an up or down command during this period (while the door is
open, for example), the manufacturer's mechanism ignores the command
until its conditions for movement are met. (Therefore, it is safe for the
computer to issue an up or down command while an elevator's door is still

open.) One condition for an elevator's movement is that its stop button
not be depressed. Each elevator's destination button panel contains a
stop button. This button does not go to the computer. Its sole purpose

is to hold an elevator at a floor with its door open when the elevator
is currently stopped at a floor. A red emergency stop siitch stops and3 holds the elevatorat thevery next floor it reaches irrespectiveof computer
scheduling. The red switch may also turn on an audible alarm. The red
switch ; not connected to the computer.

Targrt machine: The elevator scheduler and controller may be imple-
merited for any contemporary microcomputer capable of handling this3 application.

3 The specification of this problem produced with the 00 \ metlhod is inci,,,'

as appendix A.

I 5-

I I

U

5.2 Results of Applying the OOA Method

5.2.1 Comparison With Method Goals. The initial goals of the OOA met liol

were outlined in section 3.1. These goals are cummarized below, and examined with

respect to the application of the method.

5.2.1.1 Graphical Nature Of Tools. The tools of the method shoud b,

)primarily graphical, with a notation that can be understood by domain experts i'ill

littl initial training.

I The OOA method's communication with the domain expert is done predom-

inately through concept maps (graphical), story boards (graphical with support-

ing text), and an event/response list (textual). Each of these tools is fairly lin-

structured, with simple, flexible notation that requires little training to under-

stand. The fact that concept maps were used by elementary school children as3 a means of communicating understanding attests to their shallow learning curve

[Novak and Gowin, 19841. The text in the story boards and event/response list is

presented in short statements, making it easier for a reader to follow. Not only

should the domain expert be able to readily understand this material, he may well

3 l)e able to prepare the items in phase I of the method himself.

The more structured object encyclopedia entries will still be reviewed by I ho

domain expert(s), and thus need to be easily understood. The contents of the ,it-

tries rely heavily on the graphical structure diagram, interface diagram, and staie

transition diagram. The syntax of these diagrams is similar to that of the conicept

Imap, so they too should allow the reader to concentrate more on the meaning of' thc

(liagratm rather than the syntax.

3 5.2.1.2 Eaqe of Application. h(mthod should b(str',i.l, iforirurd i,

3 i t. J)plicalol.r.

The OOA method includes some heuristics to apply t he steps of t he met li,I

I
i ;)- 7)

I
I

Once the initial information is gathered from the domain expert (phase I of the

method), each of the steps taken to structure the information and create objtrl

I cncyclopedia entries is based on information present from phase I.

One of the more difficult aspects of applying the OOA method is the necessity

to iterate between some of the steps in the method. For example, in the application

of the method to the elevator problem, the similarity between the UP and DOWN

5 request panels and each elevator's control panei was not evident until these classes

were documented as entries in the object encyclopedia. Recognition of their parallel

I characteristics required the revision of the preliminary object list (page A-30) and

the object encyclopedia entry for the control panel (page A-48).

5.2.1.3 Identification of Objects, Attributes, and Object Interaction. Th(

I mnthod should support the identification of objects, their attributes, and the int, r-

action among objects. This necessarily includes documenting the object's external

interface.

3 The method supports the identification of objects and their attributes from the

concepts on the domain expert's concept maps. The identification of the interaction

3 among objects, or messages passed between them, is supported by the method via the

event/response list, as well as the linking verbs on the concept maps The objects.

3 attributes, and interaction among objects is further documented for each class of

objects in the series of entries in the object encyclopedia.

I The key to identifying the objects and messages in the OOA method is in the

3 ":onstruction of the concept maps, story boards, and event/response list in phase I.

This phase may require a considerable effort to document and refine the requirements

3 in order to adequately specify the problem.

In the application of tie OOA method to the elevator problem. the vast ma.io-

3 ItY (66 o11t of 7.5) of the concepts in the initial concept maps turned out to be direc IY

rhated to objects or attributes documented in phase II of the method. Likewis,. ;ill

5-6

I
I

of the event/response pairs in the event/response list resulted in at least one message

sent between object classes.

I 5.2.1.4 Top-Down Nature of Model. The model of the system should be

presented in a top-down hierarchical manner.

As stated in chapter III, the levels of hierarchy in the description of the system

can be seen through the interface and structure diagrams in the object encycloprdia.

As seen in the description of the elevator control system, the entries in the ohjrc/

5 encyclopedia are ordered by first describing the main object class (Elevator Control

System), then its component classes (Elevator, and Control Panel). before defining

3 the remaining classes (in alphabetical order).

The ordering of classes in the object encyclopedia is complicated by the nature

of object-oriented systems; there is not always a clear distinction between levels of

abstraction, and these levels are not as neatly organized into a tree structure familiar

in a functional description of a problem. Often, a lower level class (such as Weight or

.. ddress in the elevator problem) is used by a variety of other classes in the system.

Also, an object of a certain class may send messages to other objects at different

3 levels of abstraction. For example, the interface diagram for the Control Panel class

(see figure A.30) shows that a control panel object may send messages to higher level

5objects (via the Button Pushed message), or lower level objects (e.g. Address, or an

Input Register). To further compound the problem, objects of the Control Panel class

I iiiav appear at different levels of abstraction. The UP and DOWN Request Panels alre

logical components of the overall Elevator Control System. while an elevator coit m l

panel is a component of the Elevator class. These complexities make it difficult i,)

hierarchically order the descriptions of the object classes in the object cnyclop, ,din.

It. was these complexities which prompted the idea for the t raversal of classes throig ,h3 h,, strmct ire and interface diagrams via the OOA tool described in chapter IV.

I
i)-7

I
I

5.2.1.5 Support for Large, Embedded Systems. The method should .Sup-

port the definition of large embedded systems.

The application of the OOA method to the elevator problem demonstrates the

ability of the method to document the requirements for an embedded system. Indeed.

the event/response list, frequently used in the analysis of embedded systems, proved

effective in identifying messages between objects in the OOA method. However.3 few software engineers would consider the elevator problem, though not trivial, to

be a "large" embedded system. Larger problems require the ability of the analyst

5 to present the details of the system in a hierarchical manner. Though not proven

decisively in the example included here, the OOA method and tool has the ability

to provide such hierarchical structuring, as discussed in the previous section.

I 5.2.1.6 Minimal Redundancy. Different method representations should

include minimal redundancy between them.

The second phase of the OOA method contains a great deal of the information

5 captured in phase I. However, this is expected since one phase follows from the

other, with the different phases aimed at communication with different audiences.

Potentially harmful redundancy occurs when different views within the same phase

of the method needlessly contain overlapping information. Some redundancy exists

in all methods where the same entity is viewed from multiple views. This redundant

information is difficult to keep current when changes are made to one view of the

ent itv.

3 In phase I of the OOA method, an indication of a message between objects

nav show up in each of the event/response list, story boards, and action verb links

on the concept maps. However. each of these views contains different information

aoult the messages. The event/response list describes the message as well as any

3 respronse that is undertaken as a result of receiving the message. The concept i11;lI)

dc,cribes the message in terms of its relationship with its sender and receiver. hle,

I
I5-

I
I

story boards place the message in context with other messages and the state of the

entities in the system. Thus, while the existence of a message may be known fromi

different views, each of these views contains different information about the message.

In phase II of the OOA method, there is some redundancy in the information

3 provided on the interface diagrams. The messages that show up leaving one entitv

must show up in the interface diagram of the receiving entity. For example, the

3 Direction Of message from the Eievator Control System class to the Elevator class

must show up on the interface diagram (figure A.24) and messages sent list (page A-

I :36) of the Elevator Control System, as well as the interface diagram (figure A.27)

and messages received list (page A-41) of the Elevator class. However, the repetition

is inevitable if the requirements specification is organized such that the description

of each class is localized. This organization makes it easier to map the analysis into

an object-oriented design.

3 Thus, while there is some replication in the information contained in different

diagrams in phase II, this redundancy is minimal and is caused by attempts to

satisfy other goals. The redundancies that do exist can be exploited by the OOA

tool presented in chapter IV to check the consistency of the object classes with each

3 other.

I 5.2.1.7 Mapping [nto OOD. The result of the method should map crani,/

i to a "Booch-flavored" object-oriented design.

I Viewing the entries in the object encyclopedia for the elevator problem, the

mapping into an object-oriented design is fairly obvious. Each dociumented class

of objects in the object encyclopedia (except for the external entities that have ii,

software driver) will likely show up as objects in the design. .\lso, each of the docu-

merited classes contains enough information about. the class's behavior and externial

interface to design the class.

I
i 5-)-

U
I

5-2.2 Comparison With Other Analysis Approaches. The "elevator prob-

lem" has been used to illustrate other analysis tools, including (Yourdon, 1989] and

[EVB, 1989]. This enables a comparison of the OOA method to these methods as a

precursor to object-oriented design.

1 5.2.2.1 Modern Structured Analysis. Although Yourdon makes no

claims as to the applicability of Modern Structured Analysis as a precursor to object-

oriented design, Booch maintains that data flow diagrams (even developed with a

3 functional approach) are appropriate to capture the problem space for an object-

oriented design [Booch, 1986:212]. Also, the abstraction analysis process proposed

I v [Seidewitz and Stark, 1987] begins with the data flow diagrams produced during

structured analysis.

I The high level data/control flow diagrams for the elevator problem. taken from

[Yourdon, 1989], are shown in figures 5.1 through 5.4. These diagrams provide a feel

I for how the problem is modeled using Modern Structured Analysis.

Looking at the these figures, it becomes readily apparent that the data/cont rol

flow diagrams do not map well into an object-oriented design. While some of the

3 lower-level objects can be discerned from the data stores, it is more difficult to

iderntify the mid-level objects. Furthermore, the messages sent and received by each

object are not obviously grasped from a single data flow diagram. A significant

aniounit of additional effort must be applied to transform these data/control flow

I diagrams (as in fSeidewitz and Stark, 1987]) into a specification appropriate for an

object-oriented design.

I
I
I

i .5- lii

System S ystemn5 ~enable/diaable Reussenabrie/risanie

summons. request Store reus-eevd3

srmmons.indicat on Eleato

Request Eeao

destinaution-request

elevator- ruhdte ~ tnios

statuses .eeao

3lor destination-
flor. eacedreached. schedules

2
Floor. Control System enable/di-ableUElevator

Fle va t vr. dow -co n Il

Ov-rload

Elev-tor- p~control

Figire 7.. c~hediile aridl ('otrol Elevator Eleva tor Essetit ial I Nh Ic'U Ywrdon, 989 :638]
5-11

surnmonarequeatd eatinat ion-reque at. received

sum nofl.-rgu e t- sumnmons. indication

floor-reached fioor.reached

deitination-royiest

desti nation- i ndicat- i

Manage
Summons Elevator- Mng

RequestReus

£ 4

-Sy~tern
yen

enable/dischle enable/dlb"

Summons- Destination-
requests requests

F.igiire 5.2. Store anid Display Reyuest [Yoiirdoni. I 989:6391

5-2

System enable/disable

overload 2 1dsiain edn
. M anage . e . . n.I Elevator

Destinat mo

elevtor-destination-I statuses. schedules
destination.

. direction

FFloor

KI-v.tor- top-cont rol ivIr p'oin

VFIrvator-down-control

Hiire 5.3. ('oti rt-o V.Ie%-0Or [Y\oiirdon. 1 P00):6i131

I .5-1

Summons- Destination-
R~equests Requests__

S u mmons. request. System.

-evdSystem. enable/diable

U Overoad .Destir,. -

Maage3.
Summons Dsiain
Schedule Schedules Destination

Elevat or-

Statuses

jetore SdeieFI\a~r[Y)idn 9969

.3.2. 2.2 EVB~s Object-Orien ted Requirements Specification. The 00A\

nithod presenited1 in this thesis prodIuces a model with some similarities to EViI*5
Oh iect-Orieritedl Requirements Specification (see section 2.3.2.1). The closest reseiii1-

lblance comes in the use of a multi-dimensional view of each class of objects. The(

ol)Ject cinryclop~dia entries presented here share many common characteristics withl

FLVB's ob]rct class specification (0(S).

Despite the similarities between the two specifications, there are some funldi-

mental dlifferences in two approaches. First, the EVI3 approach provides few guiido-

I lines for identifying object classes and developing the set of ob~ject class speciflcatiOlis.

EVI3 provides some "hints" for starting an object-oriente1 requirements analysiS.

h0 th from scratch and from an existing set of requirements. bu~t these -hints- ;ire(

not dlevelop)ed into a set of specific steps and heuristics to guide the analyst. Th'le

N st eps of 00A method presented in this thesis attempt to provide the analyst wit 11 ;1

(loe eliberate approach t~o modeling the system requirements.

The OOA method recognizes a need for communication with both domain ex -

perts and designers. The object encyclopedia entries (and EVB OCSs) are structured

representat ions aimed at presenting information to the designer. The 0OA met hod

also includes valuables tools for communication with the domain expert(s). Th

concept maps. story boards, and event/response list provide a more uinstruc/ ci(I

I ~rep~resentation of the system which is often easier for the dlomain expert to fo)llow

(idl construct), and also serves as a basis for the more structumred modlels.

Ihie or(Ta nization of the OCSs in EVB's approach is based primarily on t11w

c Las-5 5 pot-ent ial for reuse. While the mnet hod of t his thIesis recognizes the poit 1-

IIJ of reu isablle components. it, places more consideerat ion in t he ordlerinhg of' cla,,

I~ v t

F InIIaIlyv. thIe 00A. mlethlod contaI is an int erlace diagram iIn thle 0hj e 1 r!/-

1), (/em it rios. This diagram. lacking iii thle FEiB OCS. provides a graphlical .'wi

I
I

tle class in terms of the messages sent to and received by other classes. This diagralii

can provide a valuable insight at a glance into the interaction among object classes

in the system.

5.3 Conclusion

The application of the object-oriented analysis method on the elevator prob-

j lem demonstrates the viability of the method in analyzing the reqiiirempnts of an

embedded software system. The combination of the concept maps, story boards. aid

I event/response list captures both the problem elements and their interaction. in an

unstructured format readily understandable by the domain experts. In addition. the

I inetnod's structuring of this information into object encyclopedia entries provides a

more straightforward mapping into an object-oriented design than a more traditional

(functional) analysis method.

I
I
I
I
I
I
U
I
I

i 5- 1(

Il I III

I
I

I VI. Conclusions and Recommendations

The final chapter of this thesis begins with a summary of the goals and o)-

jectives which guided this research. Next, conclusions are presented based on the

investigation into and application of object-oriented analysis techniques. The chap-

tel concludes with a list of areas recommended for further research ,Alowing from

I this study.

I 6.1 Sunmmary

The main goal of this thesis was to develop an Object-Oriented Analysis (OOA)

method to model software requirements as a precursor to object-oriented design. The

research was in part inspired by the work of [Barnes, 198J. who recommended the

use of the concept map as a tool to replace the informal strategy as a representation

3 of the problem space.

This thesis was guided by the series of objectives outlined in chapter I. The first

objective was to determine the requirements of an object-oriented analysis met hod

in terms of the information the method should capture. These requirements were

gathered by reviewing the existing literature. The topics covered by this examina-

I tion included the application of object-oriented techniques to the coding and desigll

phases of the life cycle, as well as various approaches to requirements analysis.

3 The next objective was to define the steps which would specify the ()A

met hod. These steps were defined by first selecting the tools needed to represent ihe,

I iriformation deemed appropriate (luring OOD, as identified in the literature review.

The OOA method viewed the requirements analysis process as a bridge of commui-

I ('t [o between domain experts and a designer. In light of this. the met hod tools Wlt'

s(l eted to be straightforward in sYntax (so that domain experts wouldn' 1I)e

whelmited wit i unfamiliar symbols), yet structured in final form (so t hat tihe d(esillIji

3 woldn't be overwhel med with prol)lem conitplexity). Concept maps. story lh tt). ifl.

6-1

I

and an event/response list capture the software requirements from the domain ex-

pert. A series of entries in the object encyclopedia for each class of objects serv:.,

3 to communicate the analysis to the designer. The specific method steps evolved.

through application on various sample problems, to traverse from one representation

i to the other.

The OOA method was then examined to see how it could benefit from au-

3 tomated support. Decision Support System (DSS) concepts were applied to define

the nature of a tool to support the OOA method. The greatest areas of potential

U support would be the tool's ability to traverse the hierarchy of obju't encyclop (d,(

entries, and perform consistency checks on the model of software requirements.

The final objective was to validate the concep's of this research by applying

the OOA method to a sample problem. The method was evaluated with respect to

the initial method goals, and the results of the analysis compared to those obtained

through other methods.

6.2 Conclusions

The concept map is a viable tool for identifying objects and classes of objects

in the problem space. The informal syntax of the concept map makes it ideal for

communication between an analyst and a domain expert. However, it is not sufficienlt

for specifying the entire problem. The concept map is useful for showing structural

3 relationships among objects, but is weak for describing the dynamic interactiol

among objects. Therefore, the concept map must be used in conjunction with otlher

3 tools (such as story boards and the event/response list) to fidl captutre the breadl hi

of information required during object-oriented design.

1 The complex nature of an object requires a sophist icated set of tools to rep-

resent tlie information needed to design it. An object contains elementls from both

the information and finctional domains, and cannot be filly characterized bY wi,

v ivw alone. Traditional finctional analvsis tools, srich as the data flow (Iia aril.

i 6-2

I

are therefore not sufficient in themselves to adequately represent objects since they

concentrate on only one dimension. Furthermore, even when these tools are used in

combination with other tools which capture the missing dimension, they are often

unclear to the designer because they lack a one-to-one mapping between objects and

entities on the diagram.

Perhaps the most significant innovation resulting from this thesis is the use of

3 the event/response list in identifying messages passed between objects. This vehicle

provides a description of the interaction of the software to its external environment.

I Each external event in the list (excluding periodic events) corresponds to a message

passed to a particular object. The responses to these events suggest the existence of

I additional messages passed between objects.

3 A somewhat surprising conclusion is that the functional and object-oriented

views may not be as detached as Booch seems to imply. At the highest levels of

abstraction, an actor object's state may be composed entirely of the states of its

component objects. At this level, it becomes difficult to distinguish between an

3 actor object and a process. Often, the distinction is more one of nomenclature

rather than substance, as in the difference between an "elevator scheduler" object

and a "sc-edule elevator" process.

Finally, an interesting observation resulting from this research deals with the

topology of an object-oriented design verses that of a structured design. The reslit

3 of applying structured design is typically a tree-shaped network of modules in a

structure chart. The set of sub-modules which compose the parent module (those

3 which stern from it on a structure chart) is identical to the set of modules the parellt

calls. On the other hand. the topology of an object-oriented design is more like

3 that of a directed graph. In an object-oriented design, tie set of objects receivi t

mriessages from a particular object is potentially greater than the set of sub-object.s

3 wlich compose that object. In other words, unlike a module in a striictured desigm.

it is riot, ,unusutal for an object to iriteract vith other objects at the same (or ev'11

6-3

higher) level of abstraction. This characteristic makes it more difficult to distinguish

between levels of abstraction in an object-oriented design than in a structured design.

I 6.3 Rccommendations

First and foremost, the OOA tool should be designed and implemented to

further apply and test the OOA method developed in this thesis. The availability of

3 a softwarc tool to assist in the application of the method not only would make it easier

to apply the OOA method, but would also facilitate the analysis of larger svstems.

With this experience, further evaluation of these concepts can be undertaken. The

description of the tool presented in chapter IV provides a basis for the design and

I implementation of the tool.

A more comprehensive evaluation of the OOA method should be performed.

This thesis demonstrated an approach to an object-oriented analysis of the problem

3 space that intuitively seems more appropriate for use with OOD. However, the true

benefit of a good approach to requirements analysis is not seen until later in the

3project life cycle, when analysis errors can have a great impact on the quality of the

software. Further evaluation should compare the results of this method to that of

other methods, not only during t, analysis phase, but throughout the project's II'

I More research needs to be done into the practical aspects of applying object-

1 oriented design to real-time embedded systems. Issues such as interrupt handling and

concurrency are not emphasized by Booch in his definition of object-oriented design.

The presence of distributed processing in many such applications makes concurrency

an especially important issue. To date, few guidelines exist to assist a designer in

3 introdilcing concirrency into an object-oriented design. This may be a result, ol

the limitations of traditional object-oriented languages (e.g. Smallialk) which lack

3 features to manage concurrent processing. The existence of tasking in Ada. however.

enables the implementation of concurrent object-oriented programs. Potentially. all

6
1 (i-1

I

objects in a system could execute concurrently; however, efficiency considerations

impose limits on this strategy. Further research needs to be undertaken to provide

heuristics for employing concurrency in the object-oriented paradigm.

An interesting observation during the course of this research calls for further

investigation. In Booch's definition of object-oriented design as it applies to Ada.

an object presents a uniform interface to all who have visibility to it. Objects may

receive the same messages from other objects, whether they are at higher. lower, or

the same level of abstraction. However, the information hiding principle seems to

3 warrant a different view of the object from different levels of abstraction. Further

research can provide an insight into what avenues, if any, should be taken to give an

object greater flexibility in presenting its interface to different levels of abstraction.

One of the assumptions of the OOA method was that the domain expert has

previously defined the software requirements; the analysis method only captures3 those requirements and adds structure to them for the design activity. Further

research needs to be done in the psychological and procedural aspects of constructing

the Initial concept maps, story boards, and event/response lists to define a complete

set of requirements.

I Finally, the issue of reusability needs to be addressed. One of the potential

benefits of the object-oriented paradigm is in the reuse of object classes. After all.

the set of predefined classes is one of the key strengths of object-oriented languages

3 such as Smalltalk and Actor. The issue of reuse seems to warrant application at

the organizational level as well as the project level. Clearly, the search for reusable3 components should be undertaken at the project level, during the analysis or design

activities. However, the decision to expend the additional resources required to de-

3 sign a component to be reusable is not as clear-this decision is as much managerial

as technical, and is influenced by the requirements of ot her projects in the organilza-

tion. Current ly. the objrct encyclopedia entries contain an assessment of tie class's

reu1se potential. The advancenent of a more comnplete framework for identit'5ily

6-5

I

designing, and applying reusable object classes needs to be investigated.

6.4 Closing Remarks

The successful application of object-oriented design depends on a complete

3 model of software requirements. The object-oriented analysis method presented in

this thesis constructs such a model. Furthermore, the information contained in this

model is structured around the objects in the problem space. This organization fur-

nishes a more straightforward mapping into OOD than functional analysis methodls

such as Structured Analysis. The OOA method also provides more guidelines and

structure for the designer than the informal strategy method originally proposed 1\"

Booch, while striving to maintain a more unstructured, graphical means of comnniu-

nication with the domain experts. The OOA method presented here yields a basis

for application and further study in object-ociented requirements analysis, object-

oriented design. and the proper use of Ada language constructs.

6
I
I
I
I
I
I
I

m 56

Ii

I

I Appendix A. Analysis of an Elevator Control System

I .I. Purpose of Elevator Control System

The purpose of the elevator control system is to schedule and control four

elevators in a building with 40 floors. The elevators will be used to carry peopl.

from one floor to another in the conventional way.

The elevator control system receives signals from summons panels on eachi

3 floor, and command panel buttons and floor sensors associated with each elevator.

It controls the movement of the elevators and the setting of lights on the summons

I panels and elevator control panels.

3 The elevator control system will only control the movement of the elevators

from floor to floor. The computer program does not have to worry about controlling

3an elevator's doors or stopping an elevator exactly at a level (home) position at a

floor. The elevator manufacturer uses conventional switches, relays, circuits. and

safety interlocks for these purposes so that the manufacturer can certify the safel \

of the elevators without regard for the computer controller. For example, if the

computer issues a stop command for an elevator when it is within eight inches of

a floor, the conventional, approved mechanism stops and levels the elevator at that

i floor, opens and holds its doors open appropriately, and then closes its door. If

the computer issues an up or down command during this period (while the door is

,Open. for example). the manufacturer's mechanism ignores the command uintil is

3 (t(lit ions for movement are net.

I .1.2 (ocryp Maps

T'le concept maps on the following pages describe ftie components of the ce-

I afor (ontrol svstem.

I
A\-1I

Elvao
cotisaIoto

I otrl
SceuigIinl

lights signals

Figure A.1. Overall Elevator Control System

A-2

Iceu
SceuinIa

haIgrt
Ili-c(.lb

Gol

Su onts Req lueste N hmb s

has partRequest hsEeao

igar part Requ esi havatm

Pael
DietinU

ow
U p FlooDow

haI
IDWih

ILme hsaSno
Elvtr haIneaie

haInEeao
Iot
El v trI i n lMoo

cotole
haU yEeao

I Figurest .. Lator Sensonrns

dietoIitLcto
Call ~ ~ ~ ~ ~ A becnb aeInec

iniieIvEevtrcnrle
StpIIlrb
Buto

repnst
Elvao

hadeIysed oto
ComnI

Had aeinwie
Oupu

Figure AA4. Elevator Motor

FloIorec
Sesr

foIah l o
sedIotan od

Elvao
orecIi n u

InerpIRgse
tored

Ilvao

Figure A.5. Elevator Floor Sensors

AI

Elvao
Coto

Ieed
cotan

cotan
IotisB tos cue nerp

foIec
dialsbhnIis Iptt

FloIegse

Fignr ~ writes Elevator Co o ae

AVT

Loa '1
Pae

Locavaion

I contains

IElevator : otoss
(Lights O ut u wrte

Hfor each Rgse

(Floor

Figtire A.T. Elevator Location Panel

IA

fo
I~ih. ah Eeao

Seso
ex m n sc nan

Elevator red
ControlInuISystem R gse

Hundreds of pounds

I Figutre A.8. Elevator Wkeight Sensor

AI-

UU

Request

beDown

qus
ReustI
PaeIsseii

sed

c o n t a i n sion t n s

Floor Rester

U Figure A write Elevator Rqet aw

Coto

FiueA9Ilvto eus ie

I
.A.A Story Boards

The story boards on the following pages describe some of the situations that

the elevator control system will face. The story boards show: 1) the status of one

of titc fuur cl,:vators (including the location and control panels, direction of trave].

motor commands, etc.); 2) the up and down request panel buttons from each of the

floors; and 3) the scheduling algorithm's list of outstanding summons requests.I
I
I
I
I
I
l
i
I
I
I
I
I
i AI

I
I
I

Elevator 1 (of 4)

* Location Panel Control Panel

Direction: Parked 0 QGMotor Command: -F
Floor Sensor: At Floor 1 00 GG

Overweight: No
Destination List: II

Up Down
Request Request Elevator

Panel Schediler

Floor 40: 0 0
Floor 39: Outstanding

Floor 7: O

1 Floor 6: 0)

Floor 5: 0)

Floor 4: 0 0
I Floor 3: 0 0

Floor 2: 0 0

I Floor 1: 0

Lah of ie four elevators has a location panrl (showing where the elevator currently is) and a .'ontr- ,,i ,
wii I h,it tons for th e passengers to enter their (lest inat ion floor. Lights behind I lie hiiitons are I it whlen th1w I., I(t,-,I
is p .sei. Also a sociated with an elevator are a direction of travel, commands to the elevator's motor. ; nsn t ni

-ig,,dlii g which floor the elevator is approaching, an overweight sensor, and a list of destination fhors sek-l II
1w' evatr's passengers,

Ihe r'qus.,l patt Is c-ontain buttons for passengers to sutmnmon an elevator. The I'P Reqiest [anel ,ihir
rtt all floors except floor .t0. Likewise, the DOWN Request Panel contains btittons on all It1 lv , t\

II,,, I .I lie passeniger will press the button on either the UP or DOWN Reriiest Panels. depending ln hi- I ii
li- Ii,,n of travel. I lie rttons have lights behind thetm which are lit when the hutton is pressed.

I 1w ,1,, ,r ,',rrtril sy.t,m maintains a list of outstanding requrests from the request panels. whiilh , , I -
lh, .i, ,'levo(,rs I,, respond to these rerl"e'ts.
\o idll,,. hat,,ris characterized by having "parked" a's its dire tion. In this case., evator I is prked 'I if,

I l i a t r nilald from the elevator rrt.rol sssv II to r o nd to a qilm nn r-ticlt.

rigirm ,. M. Story Board: hle F'Ievators

I
i ;\-12

I

I

Elevator I (of .)

Location Panel Control Panel

666666 .. 8888

Direction: Up G 0 G G
Motor Command: Up
Floor Sensor: At Floor 1 9 @ 0
Overweight: No
Destination List: -

Up Down
Request Request Elevator

Pan el Pane Schediler

Floor 40: 0 0 Out standing
Floor 39: C0 0 Requests

Floor 7: 0 0

Floor 6: 0

Floor 5: 0 0

Floor 4: 0 0
I Floor 3: 0 0

Floor 2: 0 _

I Floor 1: LO

I Ph, I* PBequest Pariel bution on floor 3 is pressed. The elevator control sylst,m will:

* illiinitiite he light behind the "up" button of the request panel on floor 3.

0 vl1 the request (31|) to the list of outstanding requests.

* pi, It ; ev.,t)r to respond to the request. Since all elevators are currently idle. the lo set rle'at,, t., I h,

,lurllnous (it] this case elevator II is sent.

* i ,'1e All 'iip coml flnand to elevatiur I.

S-,.t ,,'v; ,r I's dirction to "up".

F Figure A .1 I. Story l rodrt: Ip Hieqilest from Floor 3

I
i A1

!
I
I

Elevator 1 (of 4)

Location Panel Control Panel

i666666... 1668 88

Direction: Up 00 Q
Motor Command: UpIFloor Sensor: At Floor 2Q 0 0 0
Overweight: No
Destination List: -

Up Down
Request Request Elevator

Panel Scheduler

Floor 40: 0 Outstanding

Floor 39: 0 0 Requests

-- 3UII
F lo o r 7 : --

Floor 6: 0 0

I Floor 5:

Floor 4: 0 0
* Floor 3: 0D 0

Floor 2: 0 0

Floor 1: 0-

Si .o, l 1 "ator I .gnai . :V " - : - Iloor 2. The eleva(. r co.;- l s, suem will

I oxiingih the light for floor I on the location panel of elevator 1.

i riuminte the light for floor 2 on the location panel of elevatcr 1.

Figure A.12. Story Board: Elevator Arrives at Floor 2

I
I

i ,.A-lI

I
I

Elevator 1 (of 4)

Location Panel Control Panel

66666- .. 6 8888

Direction: Up 00 G G
Motor Command: Stop
Floor Sensor: At Floor 3 G O 0 0

I Overweight: No
Destination List: -

Up Down
Request Request Elevator

Pane nl Scheduler

Floor 40: 0 0 Outstanding

Floor 39: 0 0 Requests

Floor 7: -

I Floor 6: O 0

Floor 5: 0 0

F loor 4: - -
Floor 3: 0 0
Floor 2: 0 00 --UFloor 1" :

I I i , , r fo--r f ei- levator I signals arrival of the elevator at floor 3. The elevator control s.st cot will:

e ,xtifrgtji-h the light for floor 2 on the lrIcatim panel of elevator 1.

a ill1minat,- lhe light f,,r floor 3 on ile location panel of elevato r 1.

& is, ., ' - ommand to elevator I.

* xtui umih the light behind the buttnin floor 3 of the I_'P Request Panel.

e ,rone he 0' request from the scheduling ahlg;,r-'hm's list of i'itstanuling requelsts.

I Ijirtire \A.13. Storv Board: 'levalor Arrives at Floor 3

I
I.-1

I
I

3 Elevator 1 (of 4)

Location Panel Control Panel

6 166 88880666 ... 88881
Direction: Up (3 0 G O
Motor Command: Up
Floor Sensor: At Floor 3 0 0 0
Overweight: No
Destination List: 22

I Up Down
Request Request Elevator

Paneel Scheduler
Floor 40: 0 00'-- Out standing

Floor 39: 0 0 Requests

Floor 7: 0 0I -
Floor 6: -0 0
Floor 5: 0

I Floor 4: 0 0
Floor 3: 0 0
Floor 2: 0 0

loor 1: 0]

I I ,'I i,;j , r i r jires,,es the button for floor 22 on the control panel in -levator 1. The elevator control N-, l i IL

I i II mninate the light behind butt on 22 on the control panel for elevator I.

e * ild flo,,r 22 to the destination list for elevator 1.

" Icol' M -'i)" command to elevator 1.

I - , l,'t, ,r I i'. it, floor sensotm will signal the elevator control s)stem to -hange the lights on elesatr I [, I- i i,
;I. I, I , lin lv, a in the story board in figure A.3.

3 l i,2,, \. 1 Storv Board: Passeiiger Presses Dest iat lion Biltloi

I
i A-V 16

I
I

Elevator I (of 4)

Location Panel Control Panel0966 .. 8888
99aa88 9 2 88 88

Direction: Up 000 G
Motor Command: Up
Floor Sensor: At Floor 3 00 0 0
Overweight: No3 Destination List: 99

Up Down
Request Request Elevator

Panel Pane Scheduler

Floor 40: -0 0 Outstanding

Floor 39: 0 0 Requests

5U

Floor 7: 0 6D

Floor 6: 0)

3 Floor 5:) 0

Floor 4: 0 0
Floor 3: 0 0

Floor 2: 0 0
Floor 1: 0

ili i,,tid l,'vator summons requests are issued front floor 5 (up) and floor 6 (down). The olevator ,o'mt,

. illijunat o e ie light behind the floor 5 but ton on the UP request panel.

e illiininat, rhli light behind the floor 6 button .i the)OWN request panel.

* .- HII the r, 1iuests (51' k CID) to the list of outstanding requests.

* pi, k ,n 'I#vator to respond to these requests. Since there is ctirrentlv no elevator heading down. t ,o k. I

1,vator will be sent. to respond to the "61)" request. Since elevator I is heading up towards fh,,r -,. it iu.\
1I-.de ut handle the "5('" request. However, the elevator control system may also send a parke e'i,' ,

, rp,,nd t t his request since elevat- I may be (Wlaved for some reason (e.g. overload or 'nv,'rvcn, I
I i h, firi ,'lator to reach floor S; heaIding up will respond to the request-.

liiml,. ;\.15. Sto~ry Board : More Sinmt-itis [He,,e.."'sI
I A-I7

I
I

Elevator 1 (of 4)3 Location Panel Control Panel

6666666..123 9 95 96 97

3 Direction: Up 0O0 OG
Motor Command: Stop
Floor Sensor: At Floor 5 0 0 0 0
Overweight: No
Destination List: 22

Up Down
Request Request

Panel Eleator

Floor 40: 0 0Scheduer
Floor 39: 0 0 Otitstanding

FRenuests

loo r 7: 6D
Floor 6: 0 E

* Floor 6:Floor .5: I

Floor 4: 0 0
SFloor3: 0

Floor 2: 0 0
Floor 1: 0 I

I,. ff, -r ,'n,or for elevator I signals arriv l of the elevator at floor .5. The elevat,,r ,ont n svst,.fl will:

e xt inuii t ife light for floor 4 ,n t he locat ion panel of elevator I.

e illo in ie the light for floor 5 on the i,,ation panel of elevator I.

e i.-i, '
a "t,,,'" command to elevator I.

I* .x ingui,h he light behind the floor 5 hutton of the IP reqtest panel.

a r,-ri, the -X request from the s:hetuoing algorthms iist of optstanding requiests.

I F~igure A.16. St orv Board: levator ;rrivts aF loor 3

I
.- I xI

I
I

Elevator I (of 4)

3 Location Panel Control Panel

66666 6 8888
I 8888

*Direction: Up 0000G
Motor Command: Stop
Floor Sensor: At Floor . 0 0 0
Overweight: Yes
Destination List: 22, 36

Up Down
Request Request Elevator

Panel Pane Scheduler

Floor 40: 0 0 Outstanding

Floor 39: 0 0 Requiiests

Floor 7: 0 06

Floor 6: 0
Floor 5: -0 0

Floor 4: 0 0
I Floor 3: 0 0

Floor 2: 0 0

I loor 1: 0

I, ptssenrigr presses the button for floor 3t; on the control panel in elevator 1. ll wever, the elevator is ,v~ i h ..

I Ih,- , 1, %atr c nitr.I ytem will:

i illurninate the light behind button f; on the control panel for elevator 1.

* t,lI , r [3!; to the (lestination list f,,r elevator 1.

Sp,ri-li'.dv (,tpprox. every 5 seconds) check the weight sensor and compare with the eleval,r' III
I , 4apv it.

-111, ' , ,.-vat, r is ,verlcaded. it will not respond to ciommtnands from t ie elevato:r c.ntrol syvfem 1 intl t I,',

-t iti.ot r-%, Iv-.

, , , F I igire . T. St ory Boar. Elevator Overload

I
.\-lt)I

I
I

I

3 Elevator 1 (of 4)

Location Panel Control Panel

38 8888

Direction: U p 00 00~
Motor Command: Up
Floor Sensor: At Floor 5 00 0o
Overweight: No
Destination List: 2'2. 36

I P Down
Request Request Elevator

Panel SchedulerUl:loor 40: 0 0
-0Outstanding

Floor 39: 0 Requests

6D

Floor 7: 0

Floor 6: 0

Floor 5: 0 0

I Floor 1: 0 "0

Floor 3: 0 0

Floor 2: 0 0

Floor 1: 0 0I

nI I' . ,i I~ gr overloaded, as indi, atvd by the ,verl,ad sensor. The elevator will now rUpn1il li
".r, in' ft,rr)I,- 1,Jvator 'ontrol ,ystpn.

3 [igure A.18. Story Board: Eeva tor Load lightened

I

i .\-2fl

I
I

Elevator 1 (of 4)

Location Panel Control Panel

I 8888

Direction: p 00 0 0
Motor Command: Up
Floor Sensor: At Floor 6 00 G O
Overweight: No
Destination List: 22. 36

Up Down
Request Request Elevator

Panel Scheduler
tloof(~r 40: O] 0
Floor 40: 0 Outstanding
Floor_ 39: Requests

'Floor 7: 0 D

I loor 6: 0 0
Floor 5: O

Floor 4: 0 0
Floor 3: 0 0
Floor 2: 0
Vloor 1:

SI...-,nz,,r? [,,r .levatr1 ,i Krals arrivMT if the .rvar at floor 6. h ,e I,vat i,r ,,ntrrI s,.11 will

i, i,:,i h I h I liliht for floor - , l(t 1h, a t) .tion t wl (f atf I.

e Ji m,, -l, rhI,,- litzht for II,,,,r 6 in tiw locrtion parwl 4, -,-%,.af,,r I.

I f 1;1 uIrI in mn n f i-h r ; i , n lI . .at,,r I will mt .,top f,,r a Id, ' " r. ,iU ". u t il

n I h, "up" dir.',-i,, ['l,.var,,r t will , iaomute t-, r -: it fl-ir "ensir, will l . d . ,'
:. ~ ~ ~ ~ ~ ~ l ,'-.f . , ,-n h (, h '' ,n ,.,v ,r a I, 1 i. .a .,rdinirv;l , ai, in t i .t,,r% f-,,. I~ inh :l. '

li , re .\.i I re . it I I'd. l l, tr t f ., l i,,r h

!
i \ :_A

I
I

Elevator 1 (of 4)

Location Panel Control Panel

6096666b6... 8888GO 0 0.. 1 8888
Dire(tion: U p Q Q G G
Motor Command: Stop
Floor Sensor: At Floor 22 0 0 (30
Overweight No
Destination List: 36

iUP Down

Request Request Elevator
Panel Pane Schediier

FVloor 40: 0 Outstanding

l:"loor 39: 0 0 Requests

I~ GD

Floor 7: 0

I Floor 6: 0
Floor 5: : 0

Floor 1: 0 0
lloor 3: 0 0
I'loor 2: 0
F"loor 1: 0 I0

!. r- -, r-,,r f,,r ,,vator I signals arrival ,f lie el,-vator at floor 22. The elevator co trol v-temN will:

"* iIa li-lh 1w light for floor 21 in tle location panel of elevitor I.

a iilmtnri, th. light for floor 22 on ftI v-', aIion p,m ti, l ,f ,-levat,,r I.

0 i--I i 't, ,v p ' otnitna d to elevat or I.

o t .nwih r I, light l,.hind titton 22 4,f 1ib , tl rI patiel of "'vator I

, t -t i I ' li t f , r l e v a t ,r I is i)t ,.rep ty . w a tt '1l - 1 Al nd i " 11" a n " oti ", t " ml l I., t, ,' 1 1

SL ii lr, .\.2(). SttrY H-mrd: lK'hvalt r .\rrives; at FIhtl r 2'2

• 22
I

I
I
I

Elevator i (of 4)

Location Panel Control Panel

6666668888

i Direction: Park 0 0 0 Q
Motor Command: Stop
Floor Sensor: At Floor 36

Overweight: No
Destination List: _

SUP Down
Request Request Elevator

Panel Schedider

Floor 40: 0 0 Outstanding
Floor 39: 0 0 Requests

Floor 7:

3 Floor 6: 0 0

Floor 5: 0 0
Floor 4: 0 0
Floor 3: 0 0
Floor 2: -0

Floor 1: 0 0

t, ,.,(- ir [-.r ,levator I signals arrival ,f the ,vator at fl,r . The elevat,,rsontr,1l...yen,im i)

* , 'Olf uish tw light For floor .35 on thO oratin panel ,f elevalor I,3 * liur ,Oe l, i light for floor 36 oil uliu loation panel of elevator I

-- t' .'k I," IorIM and to -levati 1.3 *\ i+tiouili ih light [,hind button tfi of the -milrIl panl 4 elevator I

h. ,-ri lii list Fr Ilsar is now tnpt;, a l lwn ;tr to m tlstanil irng r, uqi s
-

(,,ti, ' i'

1-i l ; lh- ,ir- ti n of -l vatr l is , t t,, 1 ia k.

I Igir, \.21. Stoiuv 13uurd. ti'vleatr Arrives at l~lor 36

I

I
U

t. , Fr(nt/?tsponse List

EL'ent 1: A passenger issues an "up" ummons from a particular floor (inter-
ruipt).

ltusp.la: Read the Up Summons input register to determine the floor number3 where the request was made.

Rib: Illuminate the light behind the button on the UP summons request
panel.

R RIc: If there is an idle (parked) elevator, send it to the floor where the
sumnons was issued.

R I d: Add the request to the list of outstanding requests.

Average response time: The elevator should arrive at the floor
in an average of 20 seconds.

I E12: :\ passenger issues a "down" summons from a particular floor (in-
terrupt).

R f2a: Read the DOWN Summons input register to determine the floor
number where the request was made.

R 2b: Illuminate the light behind the button on the DOWN summons
request panel.

lt2c: If there is an idle (parked) elevator, send it to the floor where the
sumimons was issued.

R2d: Add the request to the list of outstanding requests.

Average response time: The elevator should arrive at the floor
in an average of 20 seconds.

I -:3: \ sensor for an elevator signals its arrival at a particuilar floor il-

'~rript).

1?:3;1: R{ead the floor number from the floor sensor input register for ti a
cIevator.

H31t: lxi× inglish the light on the location panel for the elevator for th,
Irovions floor.

P 3c: lltiiinate the light oi t I o at lo ualio panel for tle currit floor.

I
! .;\-2

I
I

R3d: If the floor is listed in the destination list for the elevator, then
stop the elevator at the floor and extinguish the light behind the
floor number on the elevator's control panel. After stopping, wait 3
seconds, then proceed to the next destination.

R:3e: If the floor and direction are listed in the outstanding request list.
then stop the elevator at the floor. Extinguish the light behind the
floor button on the proper request panel, and remove the summons
request from the outstanding request list. After stopping, wait 3
seconds, then proceed to the next destination.

Maximum response time: 0.1 second.I
EA: A passenger presses a destination button on the control panel of a

particular elevator (interrupt).

R-1 a: Read the control panel input register to determine the desired floor
number.

R-1b: Illaminate the light behind the button on the control panel for the
elevator.

R 1c: Add the floor to the destination list for the elevator.

Maximum response time: 0.1 second.

E5: An elevator becomes overloaded.

lSa: Disable the elevator so that it does not move until the overload
condition is gone.

{5b: Periodically (approximately every 5.0 seconds) check to see if the
overload is eliminated.

U Maximum response time: 0.25 seconds.

I I'F1: Time to check elevator weight sensor (periodic).

I 6: If current weight is less than max load, then respond to coinmiands.
Otlierwise. delav another .5 seconds and check tle weight sensor
agaiui.

U \laxirnum response time: 2.1 seconds,

i ,\-25

S.5 Known Software Restrictions

The executable code must fit in 64K of memory. The amount of RAM availabl,

CMr data structures and the program stack is limited to 64K.

The elevator control system should always respond to the passenger pisliitil

a ,Ltton on the control panel (unless the elevator is overweight, or the emergeti v

to) button is pressed). This should preclude the software from trapping a passei ger

inside the elevator. The elevator car itself (the hardware) is designed so that ,.

elevator car will only stop at a floor.

:1.6 Aftarcquircments

The following paragraphs identify domain expert imposed restrictions oil tIa

I ,hsign of the elevator control system:

The program should schedule the elevators efficiently and reasonably. Fur

,,e.a 1: " someone summons an elevator by pushing the down button on the C)ur-t I I

Iloor, the next elevator that reaches the fourth floor traveling down should slop) a1

lh: fourth floor to accept the passenger(s). On the other hand. if an elevator his]I,

I pa sengers (no outstanding destination requests). it should park at the- last floor it

vislied until it is needed again. An elevator should not reverse its direction of travel

llii its passengers who want to travel in its current direction have reached t heir

d(-1 Iinat iois.

I The maximium weight load for an elevator is 1000 pounds.

.\It a(l(lress for a memory mapped in put or otput register is hetw('en Ii
'I he upper byte is 16#00#.

.\ floor niber is implemented in eight bits. wit It a range in the cuirrent elev,,

,')i Ilu 'Vstetit of 1.. 10.

-l, elevator weight sensors tiasure le weight of an elevator iM hmliulrel., d

i ,,11d'. lte wihlt value is it ,lpletineted in eight bits. wit I a range of 0- 2 ".7g.

i \-26i

I
I

Interrupt Number

Elevator 1 Control Panel 16#01:#
Elevator 2 Control Panel 16#02#
Elevator 3 Control Panel 16#03#
Elevator 4 Control Panel 16#04#
Elevator 4 Floor Sensor 16#05#

Elevator 2 Floor Sensor 16#06#
Elevator 3 Floor Sensor 16#07#

Elevator 4 Floor Sensor 16#08#

Up Summons Request Panel 16#0A#
Down Summons Request Panel 16#0B#

Note: The locations given above were not provided in the problem description. However, this information w,od I,
,svailable to the analyst.

et Table A.1. Elevator Control System Interrupt Nuimbers

The interrupt numbers used for the hardware signals are shown in table A.1.

Addresses of in,.ut and output registers are shown in table A.2. Table A.3 shows t1he.

3 cont rol word values for the elevator motor control commands

I .1.7 Exr/crnal Interface Diagram

The external interface diagram for the elevator control system is shownu iII

[ignirte A.7.

I
I
I
I
I
I

i .\27

I
I
I

Register Xddress

Elevator 1 Weight Sensor Register 16#31#
Elevator 2 Weight Sensor Register 16#32#
Elevator 3 Weight Sensor Register 16#33#
Elevator 4 Weight Sensor Register 16#34#

Elevator 4 Control Panel Input Register 16#35#
Elevator 2 Control Panel Input Register 16#36#

Elevator 3 Control Panel Input Register 16#37#
Elevator 4 Control Panel Input Register 16#38#
Elevator 4 Control Panel Output Register 16#39#

Elevator 2 Control Panel Output Register 16#3A#
Elevator 3 Control Panel Output Register 16#3B#
Elevator 4 Control Panel Output Register 16#3C#

Elevator 1 Floor Sensor Input Register 16#41#
Elevator 2 Floor Sensor Input Register 16#42#Elevator 3 Floor Sensor Input Register 16#43#

Elevator 4 Floor Sensor Input Register 16#44#
Elevator 1 Location Panel Output Register 16#45#

Elevator 2 Location Panel Output Register 16#46#
Elevator 3 Location Panel Output Register 16#47#I Elevator 4 Location Panel Output Register 16#48#

Up Summons Panel Input Register 16#4A#
Down Summons Panel Input Register 16#,tB#
Up Summons Panel Output Register 16#4#

USummons Panel OtuReier16#C

Down Summons Panel Output Register 16#4D#
Elevator 1 Motor Control Register 16#51#

Elevator 2 Motor Control Register 16#52#
llevator 3 Motor Control Register 16#53#3 Eleator 4 Motor Control Register 16#54#

I lie addressrs given above were not provided in the problem description. However, thisirfrati.- w,,l, ,

Fable A.2. Elevator ('ontrol System flegister \ddreses

I
I
i \2

Command jValue
Up 16#01#
Down 16#02#
Stop 16#04#

Table A.3. Elevator Motor Control Word Format

BElevator I Elevator -4

Write Request Elevator Eeao
MMotor

IUp Read Request Rede
Request Vrite Request Control Cont rol

fie Pn .1Panel

I ~Write Request Convtrol ____ Locat ion Lcto
Read Reques vstemPal

RqetFloorFlo
ne SgasS as Sensor Sno

Read Req. W i h

Sensor
-Sno

I I~qirfe A\.22. Elevator (Control Svstemn E"xternal Interface Diatra i i

A-29)

I
I

i .S High Level Actor Object Identification

The elevator control system is not complex enough to be decomposed into mi-

I tiple actor objects controlling different problem areas. The elevator control systeiI

is doctimented as a class in the object encyclopedia.I
.1.9 Oganized Preliminary Object ListI

Elevator Control System

I Elevator

I Elevator 1
Elevator 2

Elevator 3
Elevator 4

I Direction

(Associated with each elevator.)

I Floor Sensor

* (Associated with each elevator.)

Elevator ID

(Associated with each elevator.)

3 Elevator Motor

(Associated with each elevator.)

Weight Sensor

I (Associated with each elevator.)

I Weight
Current Weight (Associated with each elevator.)
Load Capacity (Associated with each elevator.)

i ._A-30

I
I

Control Panel

Elevator Control Panel (Associated with each elevator.)
UP Request Panel

DOWN Request Panel

Location Panel

(Associated with each elevator.)

List

U Destination List (Associated with each elevator.)
Outstanding Request List

* Floor

* Summons Request

Input Register

I Elevator Control Panel Input Register (I for each elevator)
UP Request Panel Input Register
DOWN Request Panel Input Register
Floor Sensor Input Register (1 for each elevator)

* Output Register

Elevator Control Panel Output Register (1 for each elevator)
UP Request Panel Output Register
DOWN Request Panel Output Register

Location Panel Output Register (1 for each elevator)

Address

Ad(Associated with each input or output register.)

Interrupt Number

* (Associated with each control panel and floor sensor.)

I
I A3

A.10 .Mecssage Senders and Receivers

Event t: A passenger issues an "up" summons from a particular floor (inter-
I rupt).

Sender: UP Request Panel Receiver: Elevator Control System

R lesp.la: Read the Up Summons input register to determine the floor number
of the request. (Performed by UP Request Panel)

I Rib: Illuminate the light behind the button on the UP summons request
panel. (Performed by UP Request Panel)

Ric: If there is an idle (parked) elevator, send it to the floor where the
suninons was issued. (Performed by Elevator Control System)

Rid: Add the request to the list of outstanding requests. (Performed by

Elevator Control System)

i E2: A passenger issues a "down" summons from a particular floor (in-
terrupt).
Sender: DOWN Request Panel
Receiver: Elevator Control System

1R2a: Read the DOWN Summons input register to determine the floor

number of the request. (Performed by DOWN Request Panel)

P21: Illuminate the light behind the button on the DOWN summons
request panel. (Performed by DOWN Request Panel)

PR2c: If there is an idle (parked) elevator, send it to tle floor where the
summons was issued. (Performed by Elevator Control Systen)

R2d: Add the request to the list of outstanding requests. (Performed :),V
Elevator Control System)

1-:3: .\ se .-;or for an elevator signals its arrival at a particllar floor (in-
terript).
Serder: Elevator Floor Sensor
Hlleei ver: Elevator
Forwarded To: Elevator Control Svstem

I I? a: Head tie floor nurnber from the floor sensor inp11t register f, r 111,11
elvator. (Performed bv Floor Sensor)

A-32

I
I

R3b: Extinguish the light on the location panel for the elevator for the3 previous floor. (Performed oy Elevator)

R3c: Illuminate the light on the location panel for the current floor. (Per-
formed by Elevator)

R3d: If the floor is listed in the destination list for the elevator, then stop
the elevator at the floor and extinguish the light behind the floor
number on the elevator's control panel. After stopping, remove the
floor from the destination list, wait 3 seconds, then proceed to the
next destination. (Performed by Elevator)

R3e: If the floor and direction are listed in the outstanding request list.
then stop the elevator at the floor. Extinguish the light behind the
floor button on the proper request panel, and remove the summons
request from the outstanding request list. After stopping, wait 3
seconds, then proceed to the next destination. (Performed by Ele-
vator Control System)

E-1: A passenger presses a destination button on the control panel of a
particular elevator (interrupt).
Sender: Elevator Control Panel
Receiver: Elevator

R4a: Read the control panel input register to determine' the desired floor
number. (Performed by Control Panel)

R ib: Illuminate the ligl, behind the button on the control panel for the
elevator. (Performed by Control Panel)

R Ic: Add the floor to the destination list for -he elevator. (Performed 11w3 Elevator)

1.: An elevator becomes overloaded.
lnquiry Sender: Elevator
In lry Receiver: Weight Sensor

I? 5a: f)isa)le the elevator so that it does I,,t move until the ,ver,)3 COnl tioi is gone. (Performed Ly Elevator)

lk5,: P'riodi allv (approxiniately every 5.0 seconds) check to see if lie
,Vwed oad is elimryinated. (PerfornIed lV Elevator)

I'A': lir e to check elevator weight sensor (p)eriodic).

I \-33

I
I

R6: If current weight is less than max load, then respond to commands.
Otherwise, delay another 5 seconds and check the weight sensor
again. (Performed by Elevator)I

1.11 Documentation of Object Classes

I The remaining pages of this appendix document the object classes as eiitr",

in the Object Encyclopedia.

I
I
i

I
I
I
I
I
I
I
I

!~f

I
I
I Elevator Control System

I Textual Description:

The Elevator Control System is the main object of the system. It coiii'1

-tl'tware models of the UP and DOWN request panels, and each of the four eleva; ,13.

I is is a high level actor object which keeps track of and schedules each o[' Fi

The elevator control system keeps track of the outstanding summons re(Iti,-

rmd schci les elevators to meet these requests. The elevator control system shill

Ihdicude the elevators efficientlv and reasonably. For example. if someone summ1,,t1

;ii eievator by pushing -he down button on the fourth floor, the next elevator ih!l

Iacwhes the fourth floor traveling down should stop at the fourth floor to accept I1W

;ts.sergers. When the elevator control system receives a summons request. it si,, lli

U h/t deterr-miie if there is a parked elevator to send to answer the summons. If ;n,,t

e n elevator reache its final destination and the request is still outstanl,

t ho free elevator should be sent to the floor to answer t lie summons.

Struicture Diagram, Interface Diagram, and State Transition Diagram:

Sie fiires A.I I, A.?I. aul l A.2 5.

3 .\lssages received by class:

i. i,, loor A signal that an elevator has arrivedi at

fI) or.

i'p " liiii arl, Rqlic'1 e t .A gNal ry lil 'tl a n 1 I iim ti nins re(li'-' ll, sI b'n issued.

3 I ~~i n~ P A~nI signal t han ai D)OWN '(1111; lwinii)l ll'

lids lw"Ti IsiSled.(

I
I

i \ V-

Messages sent by class:

Suimmons Request.Create Create a summons request from thetlr
numbifer and direction.

Control Panel. Extinguish Light Signal the UP or DOWN reqiiest paw-)l
e.-tinguish one of its lights due to an

vator arrival.

List. Is Empty Test if the list is emipty.

List.Add Item Add a summons request to the list.

Li-t.Rei-nove Item Remove a summons request from the ls

IList Is Iii List Checks to see if a given sumMOnIs reinsi("

Is in the list.

IFloor.Assignment A\ssign one value of a floor nuimber to 11

other.

Floor Is less than Test if one floor number is less than ti
other.

Lilevator. Final Destination Of Returns the Final (lest ination of the ecx-,i3~ for.

ELievator. Dired ion Of Ret urns t he di rection of the elevator.

I Fieva for. Floor Niiumber Of Retu11rns thle cuirrenT1 f]oo00 hre heI C11 ''!

tol- is.

1 1K Ic evat or. Set Di rection Set the dIirect ion of an iIdle elevator.

Ll11,(Itor..Stop at this floomr Signal to the elevator to stop) at thle ciiri~w

floor.

3 l.I'2, .(o To F~loor iiilto thre clcvator to (To) I li tiit ,!,

flor

I
I

Elevator ID.Assignment Assign one value of an Elevator ID to an-
other.

Elevator ID.Is equal Test if two elevator IDs are equal.

Description of any state limitations:

If an outstanding request is still pending after 20 seconc's, poll the elevators h,

I sec if any is free to respond to the summons.

List of exported exceptions:

None. The Elevator Control Svstem must handle all errors internally.

I List of exported constants:

None.

Re-use considerations:

0 This class is application specific.

I
I
I
I
I
I
I
I

i ..\ $17

haIpr
ElvtrU

Ioto eus
haIatt hspr ae

DoniI
Reus

ElvtrI ae
isalhsp rtiI oto

Pae
Elvtr2hspr

Fi ~i gl e a n23 E levator 4 v t i : S ri c oit ain s

El v t riI u n oiLitReus

FiueA2.EeaoIoto vtu:Smcir - rn

Arie A lo
UpSmosIeus

Upw Summons Request

Downmummon aesinmn

DONRequest Paneua

tiP Requiest Panel remove itemflonubrf

is in liststop at this floorIassignment final destination of

Request List Floor Elevators, -1

Fi:gu re A .24. Elevator (i.ontrol Svst er: Int erface D~iagranm

AI1

I
I

I
I
U
U

List Arrived at, floor

Summons Up summons request
Request Down summons request
SatisfiedI

I
Summons request satisfied
Up summons request
Down summons request
Arrived at floor

Figure A.25. Elevator Control System: State Transition Diagram

I
I
U
I

i ,.\- Br)

I

i Elevator

Textual Description: An elevator object controls the movement of a single ('l-

evatur. This class of objects, each of which has a unique Elevator ID, conits

cont rollers for each logical componeit of the elevator: motor, control panel, localio,01

ixuel. weight sensor, and floor sensor. The elevator has a direction associated w I I(

it. aiid maintains d list of destinations entered on its control panel. This cout wl'1-

will move the elevator to each floor in its destination list, and respond to requst s

I relaved through the elevator control system. The controller handles the settilul (d

liglhts on the location panel based on input from the floor sen:'ors. An elevator wit hi

I no outstanding destination requests should park at the last floor it visited. An ('l'\ ,-

toor should not reverse its direction of travel until it has reached its final destin;lt ltll

i its current direction.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.26, A.27, and A.28.

I Messages received by class:

Go "''o Floor Stop the elevator at the given floor.

Stop At This Floor Stop the elevator at t he current floor.

Set Dircclion Sets the direction of the elevator. (1he

eievator direction must first be "Parked".)

V l,,or Numrrber Of Returns the current location (floor nuni-
ber) where the elevator is.

I
I
I

i \-II

I

Direction Of Returns the current direction of the eleva-
* tor.

Final Destination Of Returns the floor number of the elevators
final destination in its destination list.

Button Pushed This is a signal that a given button has
been pushed on the control panel, indicat-
ing a new destination.

S.Arrival At Floor This is a signal from the elevator floor sen-
sor that the elevator is about to arrive at
a given floor.

I Messages sent by class:

Elevator Motor.Up Signal the motor to move the elevator up.

Elevator Motor.Down Signal the motor to move the el\';,iwr
3 Down.

Elevator Motor.Up Signal the motor to stop the elevator.

Control Panel.Extinguish Light Signal the elevator control panel to (xtill-

guish the light for the current. floor.

Elevator ID.Assignment Assign one Elevator ID to another.

Location Panel.Illuminate Light Signal the elevator location panel to illw1-
minate the light of the floor at wh r I I
elevator is about to arrive.

Location Panel.Extinguish Light Signal the elevator location panel to ('XI II-
guish the light of lhe floor the elevaior I
leaving.

I

i ,\- 12

Elevator Control System.Arrived At Floor Signal to the elevator cont rol v-

tern the elevator has just arrived io
a floor.

WAeight, Sensor.Check Weight Check the current weight of thle (,I-
evator.

IWeight. Assignment Assign the weight sensor value to,

the current weight ati rihulto.

U \V~eight.Is Less Than Determine if the current ~e~ti
less than the elevator's loadl ci 1);(-

itV.

Di1rect ion. Assignment Set the value of the elevator>:- direr-

tion attribute.

Direction.Is Equal To Test the current. vaitie of Ilie hi-

rection attribute to see if' it lks
'"Parked".

UList.Js Empty Check if the destination list V.
empty.

List.Is In List Check if a floor number is In the(I destination list.

List.Remove Item Remove a floor from the (lest tti~ii I

list when N'ou arrive at that iltio

List. Add Itemr Add a floor to the (lost inat V i II:!

3 Description of any state limitations:

If the elevator is overweight, the elevator cont roller will1 periodically (every- VI,

I K~rotI~ls) ck the weight sensor to see if the load has been reduced. The eev

xi ot leave Il he overweglt state iint il thIe senisor reports t liat th Iv alui e of cit r V ii

I x~'; loss tihan the load calpacitv.

I1

I
I

List of exported exceptions:

Elevator Busy An attempt was made to set the direc-

tion of an elevator whose direction was not
"Parked".

Elevator Overweight An attempt was made to direct the eleva-
tor to another floor when the elevator is
overweight.I

List of exported constants:

Norle.

List of objects in class:

* Elevator 1

i * Elevator 2

* Elevator 3

i 6 Elevator 4

i Re-use considerations:

[hls c7la>s is application specific.I
I

I
I
I

i .\ 11

Elvtr hs atIa trbt etnto
MooIlvtrLs

Ele-vator has aras attribute D etaion

I'eaor spr
CotoIurn

UeWlh
haIpr

isaIctinisatib t
PaeIodiCoto*)a)a ,t aai
Figurl Aia p2.Ee ar triti iga

UNihti

AI

I Go To Floor
Set Directio-i
Stop At T1.i3 Floor

Floor Number Of
Direction Of
Final Destination OfU Button Pushed]

Ulvtr p Arrival At Floor

Elevator Down is

IExtin guish Light d t

Paumnae Lightaio

Astigngus Light

Elevator ChcIDeoiI ('onrectrol

Panel

Figure F A 2.evator: nefc iga

Ioao
Weigh

Seso

Idl
AriaItArvlA

Iia et ot lo
adIetnto ia et

gotIlo
aI etnt~

GonIon

OA.eh load capct

load Capacity

Figure A.28. IFlevator: State T~ransit ion Diagram

1- 7

i
I

Control Panel

I Textual Description:

\n object of the control panel class drives a hardware control panel. It han,4lhcs

tie interrupts raised by pressing buttons on the panel, determines which buttn is

pressed. and automatically lights the lamps behind the buttons. The control pailc;

I contained within a parent object, and sends a mc-sage to this object when a 1,,[I(o,

is pushed. The control panel uses input and output registers to communicalt will

I the hardware.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.29, A.30, and A.31.

I Messages received by class:

Extinguish Light Extinguish a light behind a button on the

control panel.

Button Pushed This is a signal (interrupt) from the hard-
ware that a button on the control panel
has been pushed and the button number is

I in the input register.

I Messages sent by class:

3 linterrmpt Namber.-Assigniment Assign a value of one object to am a

wIei initializing lhe control panel.

3 Alress..\ssignment Assign a value of one address oje, 1 t'hr
the input and output reg i,) to al,,Il,

when initializinq the cont ro panel.

liiifluI ll "I.hed A rnessage to th le receiver 1hal a I 'w ,i

I 'nel button has hecil pllshe, .

I
.A- ls

I

I Input Register.Read Read the floor number from the input reg-
ister.

Output Register.Write Write the floor number to the output reg-
ister.

Floor.Assignment Assign the value of one object to another
floor object.

Description of any state limitations:

When the control panel writes a floor number to the output register. that li,_,I

is toggled. Therefore, the message Extinguish Light could actually illuminale lie

light. The control panel driver assumes that the light specified in this message is

actually on. This is a safe assumption in this system since the elevator or elevator

control system will maintain a list (destination list and outstanding respons(list ol"

those control panel buttons that are pressed.

aList of exported exceptions:

None.

List of exported constants:

* None.

List of objects in class:

I I Elevator 1 Control Panel

* Elevator 2 Control Panel

e Elevator 3 Control Panel

e Elevator I Control Panel

e IP Hequest Panel

* DOWN Request PanelI
I A- 19

I

U Re-use considerations.

This class has re-use potential. If re-used, take note of the disciission mi(le

the State L imitations section.

ha
I att ri but e Input

Reegister
Addrers

Figure A.29. Control Panel: Structure Diagram

AI5

I extinguish light
button pushed (interrupt)

Iassignment ae rt

Interrupt gse

.;kdre,,, assignmentInu

Button Piushed egister

3 Input Register Address

Output Register Address

Figure A.M0. Control Panel: Interface Diagram

Ext in gis :Bto shsle3 ~ ~~~LightButnPhe

A
Light

imIrinated

Figuire A.31. Confrol Panel: State Transit ion Diagram

A-51

I
I

Address

* Textual Description:

An address specifies the memory location of an input or output regist r. "Il

aldress is implemented in eight bits.

Structure Diagram, Interface Diagram, and State Transition Diagram:

I Szc figurcC A.82, A.22, a. ,1 . .

MNessages received by class:

Assignment Assign the value of one address object to3 another.

I Messages sent by class:

3 None.

Description of any state limitations:

I An object of type address must have a value in the range 0..256. An adlr.,-s

object must be initialize before it can be read.

List of exported exceptions:

5 Constraint Error The value ass: to the object is not. in
the proper ran;.

List of exported constants:

Max Address - 256

U fRe-use considerations:

This class is potentially re-usable.

A
I

Ik5

8 bits C nee

I Figure A.32. Address: Structure Diagram

I Assignment

Addres

Figure A.3:3. Address: Interface Diagram

ass igunic int

UFigure A .3-1. (I drem: St ate (?rais I I I IT I) I grallm

A-5

Direction

Textual Description:

i'he direction class specifies the direction of an elevator. The values of" al

object of this class are "UP", "DOWN", or "Parked".

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.35. A.36, and A.37.

Messages received by class:

Assignment Assign the value of one direction object to
i another.

Is Equal To Test to see if two direction objects have the
i s, me value.

J Messages sent by class:

i None.

Description of any state limitations:

i The values of an object of this class are "UP". "DOWN", or "Parked". An

1 object of this class may' not be cad until it has been assigned a value.

List of exported exceptions:

Constraint Error The value assigned to an object of this class
is not "UP", "DOWN", or "Parked".

A
U
I
I
I

List of exported constants:

I~ The following values are visible: "UP", "~DOWN", or "Parked".

Re-use considerations:

This class is application specific.

I Direction

H has

Vau
caIb

FUre W. ieton tutr Dgra

Figure A.3 ssinei n: tutr iga

I is equal to

Direction

Figure A.36. Direction: Interface Diagram

A-55

Innt
Iaie

asinmn
Intaie

IiaueA 31 ~rc'n:SaeT a sto ig a

A

I
I
I Elevator ID

3 Textual Description:

.-\n elevator ID is simply an integer identifier used to identif, an elevator ht

I Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.38, A.39, and A.40.

Messages received by class:

3 Assignment Assign the value of one Elevator ID object
to another.

i Is equal Test if two Elevator IDs are equal.

Messages sent by class:

I N one.

Description of any state limitations:

UThe value of an object of this class is limited to the range 1... An oh.j*'('f (,1
this class may not be read until in has been assigned a value.

3 List of exported exceptions:

Constraint Error The value assigned to an object of this classj is not. in the range 1.A.

3 List of exported constants:

None 1.

3 Re-use consideraLioji-:

THhis class is application specific.

A
I
I
I

! A-57

I

'Iis m a i u

ElvtrII

I V ~~~~tir~E lx:s.evat or IDI: St ru ctutre Di agramn

U as,;ifon ment

I is equal

I Figure A.39. E.ievator ID: Interface Diagram

I ~as signmeni t

Iliit Id lzedi

3Figure A.40. FAevator ID): State lraiist tIo TI D iatra i

3s

I
I

Elevator Motor
Text al f'.escription:

This class of objects controls 1t(motor of an elevator. It responds to Cin,i
, 'll ias messages by loading the proper control word into the physical ouit pul,,,;;

Shat controls the elevator motor. The commands are: ('p - 16# .1 Dft. I)

- Stop 16#0-1#.

Structure Diagram, Interface Diagram, and State Transition Diagram:3 Se- !iqures A .. 1. A.12, and -\. 13.

Messages received by class:

1'p Set the motor to raise tie elevator.

1 ,)wri Set the motor to lower he el(evator.

S,[I .'t the motor to sto0p the ollvator.II
Messages sent by class:

Outo 1et tister.Write Write 0conrol word totheotput reaister.

3 A lhif ,. .. S'<i n n Assigni o, address objct', ali e () aiii-
ot her.I

I)escription of any state limitations:

5 iw li.

List of exported exceptions:

I
I
I

I

List of exported constants:

Nonie.

List of -')jects in class:

I lvtr oo
* Elevator 2 Motor

* Elevator :3 Motor

* Elevator I3 Motor

Re-use considerations:

3 This class Is app~lication specific.

Elevator3 Motor

hias p~art

"Motor

li ~it R

is a

Address

IL
3 Figiirt A.l. FKhevator Mlotor: S triictuire Diagram

AI w

Down
Stop

Elevator
Motor A:~nnn

write Address

Out put
Register

3 Figure A. 12. Elevator Mlotor: lr',erface Diagram

I stop

stpStpe
dow

'to
~lip

Io

U l~iguire A.413. Flevator Motor: Stlate Tranisit ion Diagramn

I
I

Floor
Textual Description:

This class of objects defines the floor numbers that an elevator can Stop al.
The floor number is implemented in eight bits so that it can fit in the input ami,
output registers.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.44, A,45, and A.46.

Messages received by class:

Assignment Assign the value of one floor object to an-
other.

Is Equal Test to see if two floor objects have the
same value.

Is Less Than Test to see if one floor value is less than

the other.

Messages sent by class:

3 -None.
Description of any state limitations:

The value of an object of this class must be in the range L...0. An object o,

Ihis class may not be read until it has been assigned a value.

List of exported exceptions:

UConstraint Error The value assigned to an object of this class
is not in the range 1..40.I

List of exported constants:

Top Floor -- 40

3 Re-use considerations:

ii[his -'Ias:: is application specific.

A
I [;

I
I
I
I

has attribute hsmaximum

II (Size 4

Figure A.44. Floor Number: Structure Diagram

I
I

Is less than
Is equal

Assignment,

F oo r

I Figure A.15. Floor Number: Interface Diagram

I
A-i:

I

Iaie jInnt

asinmn

Iniiize

IFigure A.46. Floor Number: State Transit Ion Diagram

A-6

I

Floor Sensor

I Textual Description:

This class of objects manages the elevator floor sensors. When the phyic"i

floor sensor triggers an interrupt and writes the floor number in an input register.

I this floor sensor manager reads the register and sends a message to some receiver.

In this system, the receiver is always an elevator.

Structure Diagram, Interface Diagram, and State Transition Diagrai.i:

See figures A.47, A.48, and A.49.

Messages received by class:

Arrival At Floor This is a signal (interrupt) from the hard-
ware that the elevator is approaching the
floor whose number is in the input register.

I Messages sent by class:

Address.Assignment Assign the value of the input register d-
dress into it's object at initialization.

3 Input Register.Read Read the floor nhitnler from the floor seni-
sor input register.

I Arrival At Floor A message to the receiver that an elevawor
has reached a floor.

I Floor.:\ssignment Assign the value of one floorobject to an-
other.

Interrupt Number.Assignment Assign the value of the floor sensor iiltct-

rupt into its attribute at initialization.

I
I A\- 65

I

II
Description of any state limitations:

i None.

List of exported exceptions:

i None.

List of exported constants:

* None.

bf List of objects in class:

* Elevator I Floor Sensor

i *Elevator 2 Floor Sensor

* Elevator 3 Floor Sensor

* *Elevator 4 Floor Sensor

Re-use considerations:

This class has limited re-use potential.

!

has attributeI

ha atrbt, NmeInpu

Address

Figure A.47. Floor Sensor: Structtire Diagram

A
A\-66I

I Arrival At Floor (interrupt)

Sensor Assignment

Inu ;\ssi mn

I Arrival At Floor

Figure A.48. Floor Sensor: Interface Diagram

U ni nit-
al ized

I assignment

InitialI D ~

I'igiir-e A.49. Floor Sensor: State Transit ion Diagram

AI6

I
I

| Input Register

Textual Description:

3 .Xn input icgister is a hardware entity, but in many ways acts like a software

I It: In this system, the input register will contain a bit pattern (eight bits) whicli
- interpreted as values of class floor or weight as appropriate when read 1y

.,J le: bjects.

Structure Diagram, Interface Diagram, and State Transition Diagram.i:

|ee figures A.50, and A.51. A state transition diagram is not appropriate Eut

-ass.

3 Messages received by class:

Read Read the value in the input register.

Messages sent by class:

None.

Description of any state limitations:

None.

List of exported exceptions:

N/A

List of exported constants:

N/A

List of objects in class:

3 * Elevator 1 Weight Sensor Register

* Elevator 2 Weight Sensor Register

* * Elevator 3 Weight Sensor Register

* Elevator 4 Weight Sensor Register

e * Elevator I Control Panel Input Register

* Elevator 2 Control Panel Input Register

* Elevator 3 Control Panel Input Register

* Elevator 4 Control Panel Input, Register

* Elevator I Floor Sensor Input Register

* ElIvator 2 Floor Sensor Input Register
e * Elvator 3 Floor Sensor Input Register

A-68I

I

" Elevator 4 Floor Sensor Input Register

3 .* UP Summons Panel Input Register

" DOWN Summons Panel Input Register

Re-use considerations:

This is a description of a hardware entity and thus has no software re-use
potential.

I

3 Figure A.50. Input Register: Structure Diagram

I
I

Regte

Figure \.51. Input Register: Interface Diagram

A -69

I nnn~ mIl I nm

I
I

Interrupt Number
Textual Description:

This class defines the interrupt numbers. Valid interrupt numbers are those
which can be represented in eight bits.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.52, A.53, and A.54.

Messages received by class:

Assignment Assign a value to an Interrupt Number ob-
ject.

Messages sent by class:

None.

Description of any state limitations:
The value of an object of this class must be in the range 0..255. An object tdf

this class may not be read until it has been assigned a value.

IList of exported exceptions:

Constraint Error The value assigned to an object of this class3 is not in the range 0..256.

I List of exported constants:

*None.

List of objects in class:

I
* Elevator I Control Panel Interrupt

Elevator 3 Control Panel Interrupt

* Flevator 3 Control Panel Interrupt

* Elevator 4 Control Panel Interrupt

I Elevator 1 Floor Sensor Interrupt

* Elevator 2 Floor Sensor Interrupt

i Elevator 3 Floor Sensor Interrupt

A- 70I

1 * Elevator 4 Floor Sensor Interrupt

UP Summons Request Panel Interrupt

I . DOWN Summons Request Panel Interrupt

I Re-use considerations:

This class has limited re-use potential.

Inhasruptthasmax

has ttr;JuteNumbr 255

Figure A.52. Interrupt Number: Structure Diagram

Assignment,

Interrupt
T ii mber

I Figure A.53. hiterrupt Numnber: Iriterface Diagrami

IA A7T1

Iaie IInnt

asinmn

Iitized

U Figure A.54. Interrupt Numnber: State Transit ion Diagram

A-7

List
Textual Description:

The list class models a bouinded list of Itemns. Itemns can Ihe a(Idled. or rei uv,

froni thli list. as well as tested for inclusion in the list.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.55, A..56, and A.37.

Mlessages received by class:

ks Ewlpty rest to see if lhe list Is empljty of itemls.

Is In) List Test to see if a given itemn is in the list.

IAdd Iteml Add an iteml to thle list.

Re1MOVe It em Remove(art it em- fromn the list.

Messages sent by class:

Is Equpal Test if two iteflis are equial rjeqiiiredl from-I class of itemi).

.\ ssi gri ittent, A ssi gn thle -al te of one It em T to a not herI reqired fron class of itervi).

Description of any state limitations:

No It eml erIl lhe remo0ved fromn ;rt emijt ly list. rior added to it fit 11 11

A -73

List of exported exceptions:

Overflow Attempt was made to add] to a full list.

Iinderflow Attempt was madle to remove from anI empty list.

U List of exported constants:

Size -- The size of the list.

Re-use cons iderat ions:

U LlThis class is potent ially re- usalle.

Lis

Isal

I Figiure A.55. List: Striuctijire Diagramn

I is empty
is in list
add item

iremove item

List

I is equal
assignment

Figure A.56. List: Interface Diagram

U Remove Item (Error)

I Empty

Remove item
Add item

Not Add item
Empty Remove i em

Remove item Add item

I Full

Add iteiii (Error)

Figiire A .57. Lit:State Transit on Diagframl

AI7

I
I

Location Panel

Textual Description:

This class controls the operation of the location panel hardware of an elevato.

The class responds to messages to illuminate and extinguish lights in the panel. It

does so by outputing the floor number of the light to the location panel owput

3 register. The class maintains a list of previously illuminated lamps (of which lie,

shotild be only one). The location panel will only extinguish lights which wir,

3 previously illuminated.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.58, A.59, and A.60. The state transition diagram describes the

3 Iactivity of a single light on the panel.

Messages received by class:

Illuminate Light Illuminate a new light on the location
panel.

3 Extinguish Light Extinguish a light on the location panel.

I
Messages sent by class:

I Floor.Assignment Assign a floor number value to the floor
number attribute.

I Address.Assignment Assign the output register address to the
attribute at initialization.

I Owpi~ tt lRegisler.kWrite Write the floor number to the location
i panel output register to toggle the light.

I A. -76

I

II
I

List.ltemove Item Remove a floor number from the list of il-
luminated lights.

List.Add Item Add a floor number to the list of illumi-
nated lights.

List.Is In List Test to see if a floor number is in the list
NN of illuminated lights.

Description of any state limitations:

U The location panel controller will check its status list before sending writ ill

to the output port to toggle the light. Therefore, it will preclude the possibilitY ()ft

toggling the light off when it should be illuminating it, and vice versa.

List of exported exceptions:

None.

List of exported constants:

U None.

List of objects in class:

I
@ Elevator 1 Location Panel

* Elevator 2 Location PanelII
* Elevator 4 Location Panel

I Re-use considerations:

T.his class has limited re-use potential.

I
I

A.\-77

I

Ihas attribute Pnlcnan

has attribute Ls

* Re ,ter

3 ddress
Ls

Figure A.58. Location Panel: Structure Diagram

Ilu iatIih
ExigisIih

I~ ~ ~~~lo sii re 9.Lt Laiou~n:htrfeDiga

PaeIe o ei eadIie

Ix'us

illuminaext xi ngis

3/toggle light /toggle light

* On

illuminate

Figure A.60. Location Panel: State Transition Diagram

A-79

I

| Output RegisterI
Textual Description:

.;\ti output register is a hardware entity, but in many ways can be thougi, (4

as a software entity. In this system, the output register will be written a bit pattrin

i (eight bits) which is interpreted by other hardware devices to be a floor number.

Structure Diagram, Interface Diagram, and State Transition Diagram:

S'ee figures A.61 and ref5orid. A state transition diapram is not appropriate

for this class.

Messages t ceived by class:

Write Write the value into the output register.i
Messages sent by class:

None.

Description of any state limitations:

3 Noule.

List of exported exceptions:

List of exported constants:

List of objects in class:I
e t'llvator I Location Panel Output Register

3 * L'hc ator 2 Location Panel Output Register

o Ile'vator 3 Location Panel Output Register

o F lievator 4 Location Panel Output Register

* l-bvator I Control Panel Output Register

m* le.lvator 2 Control Panel Output Register

S.l,vator 3 Corntrol Parel Output Register

I
..U- .,,,m . mm m m m m

I
e Elevator 4 Control Panel Output Register

* Elevator I Motor Control Register

* Elevator 2 Motor Control Register

* Elevator 3 Motor Control Register

* Elevator 4 Motor Control Register

* Up Summons Panel Output Register

* DOWN Summons Panel Output Register

* Re-use considerations:

This is a description of a hardware entity and thus has no software re-iis,
potential.

I

3 Figure A.61. Output Register: Structure Diagram

I 3 Write

Figure A.62. Out put Register: Interface Diagram

A-81

I

Summons Request
I Textual Description:

The summons request class describes a structure which contains the importaiit
information about a summons request: its floor and direction. An object of this typt,
is useful for placing in a list of requests for further processing.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.63, A.64, and A.65.

3 Messages received by class:

Create Create a summons request value from a
floor number and direction.

Is Equal Test the values of two summons request
i objects to see if they are equal.

Assignment Assign a summons request value to another
object.

I Messages sent by class:

Floor.Assignment Asig, L. floor nulnbcr to the summons3 request component when creating a sum-
mons request.

Floor.Is Equal Test to see if the floor number components
of two summons requests are equal.

I Direction.Assignment Assign the direction to the summons re-
quest component when creating a sum-3 lmons request.

Direction.Is Equal Test to see if the direction components of

two summons requests are equal.

Description of any state limitations:

The floor number and direction conmponents must each have legal valhues f,)

i, ,os respective classes. An object of this class may not be read mintil it has hl!
,ratel via the crcate message.

A -82I

I
List of exported exceptions:

Constraint Error The value of the floor number or direction
assigned to an object of this class is not in
the proper range for its class.

List of exported constants:

None.

Re-use considerations:

This class is application specific.

S ummons
Request

has part has partU
Floor Direction

Figure A.63. Summons Request: Structure Diagram

A,I
I
I

I A8

I
3 A.- Il i 83

I
I
I

create
is equal

s gassignment

3 Summons
Request

Sassignment assignment

iis equal *s equal

Floor Direction

Figure A.64. Summons Request: Interface Diagram

,I
Uninit-

create
assignment

Ilnitialize create

assignment

i Figure A.65. Summons Request: State Transition Diagram

l
i A,- 84

I

I
I

Weight
'iextuai Description:

This class of objects defines the weight of an entity, in this case elevators. Tie
units for this class are in hundreds of pounds. The type must be implemented in
eight bits, since its value is taken from an input register.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See figures A.66, and A.67. A state transition diagram is not required foi- lil
class.

Messages received by class:

Assignment Assign a weight value to an object.

Is Less Than Test to see if one value of weight is less t han
another.

I Messages sent by class:

None.

Description of any state limitations:

The value of an object of this class must be in the range 0.25.. An obt),(,)t

this class may not be read until it has been assigned a value.

List of exported exceptions:

Constraint Error The value assigned to an object of this class
is not in the range 0..255.

I
List of exported constants:

I Max Weight - 255

3 Re-use considerations:

This class is application specific.

I
I

A-!
I.-S

Wegh
isaIa a - i i u

Iaiu

U Figure A.66. Weight: Structure Diagram

* assignment

Weig',ft

Figure A .67. WVeight: Interface Diagram

I
Weight Sensor

Textual Description:

This class of objects manages the weight sensor for an elevator. The phy-i,,l
weight sensor periodically places a weight value in an input register. When a w1it

check is requested, a weight sensor object will read the weight sensor input re-i ,Sr

3 andi~ ret urn the weight value.

Structure Diagram, Interface Diagram, and State Transition Diagram:

See Figures A.68, A.69, an(l A.0.

Messages received by class:

Check Weight Read the weight sensor input register and
return the weight value.

U Messages sent by class:

Weighi.Assignment Assign the weight value from the input reg-
ister to the current weight at iribl)te.

Input RegisterRead Read the weight value from the weight sen-
sor input register.

.\(llress.Assignment Assign the address of the input register to
its attribite at initialization.3 Description of any state limitations:

Noie.

List of exported exceptions:

3 lNone.

List of exported constants:

I N one.

I8 A-!

I\S

I
I

List of objects in class:

I
* Elevator 2 Weight Sensor

* Elevator 2 Weight Sensor

I Elevator 3 Weight Sensor
*Elevator 4 'Weight Sensor

Re-use considerations:

This class has limited re-use potential.

has attribute

!RiteOutput" ha trib,,,e

.A dressC u r n
I

I Figure A.68. Weight Sensor: Structure Diagram

I
I
I
I
I

check weight

Veigh t
Sensor

Iassignment assignment

UWe ig ht Address

read

RiInput
Reiter

U Figure A.69. WVeight Sensor: Interface Diagram

Vnlinit -
ialized

initialize

Figure A.0. li Sensor: State Transit ion Diagram

Bibliog'raphy

Abbott. Rrusscl J. ""Program Design by Informal English Descriptions"." Co in ii-
nicatioits of the A CM, 26(11):882-89.1 (November 1983).IA

I3,rnes, Patrick D. A Decision-Based Methodology for Object Oriented D(,si..
IS thesis, AFIT/GCS/ENG/88D-1, Air Force Institute of Technology. 18S.

(.\DA202579).

Ilooch. Grady. Software Engincering with Ada. The Benjamin/Cummings Publish1-

ing Company. Inc., 1983.

Hooch. Gradv. -Object Oriented Development," IEEE Transactions on Softl r,,
Engineering. SE-12(2):211-221 (February 1986).

Hooch. Gradv. Softwvare Components with .Ada. The Benjamin/Cummings Puhlishi-
ing Company, Inc., 1987.

Booch. Gradv. Softwrare Engineering with Ada (2nd Edition). The 13ei-
jamin/Cummings Publishing Company, Inc., 1987.

i3ralick .Jr.. William A.An Examination of the Theoretical Foundations of the Ohbj, I-

Oriented Paradigm. MS thesis, AFIT/GCS/MNA/88M-O1, Air Force Institute
of Technology, 1988 (ADA 194879).

(hen, Peter P. "'The Entity-Relationship Model-Toward a Tnified View of Data"."
:CM Tran sactions on Database Systems, 1(1):9-36 (March 1976).

('oad .Jr.. Peter. "Object Oriented Requirements Analysis (OORA)." In Proc(,-

i. ngs of the Twelfth Annual International Computer Softw'are and .4pplicabiol.
Conferencc, page 436, 1988.3 l)'.Iarco. Ton. Structured Analysis and System Specification. Englewood Cliffs.
NI: Prentice-Hall. Inc.. 1979.

l)opartiment of Defense. Reference Manual for the Ada Proaramming [a l,.

.1 ,\!I.11IL-STD- 1815.4. 198.

FXH Software Ingineering Inc..A a Object Orierted Dsiqn Handbook for Ada 5,,./-
Sware. Frederick. I). 1985.

.1KH Soft ware lEngineering Inc. Object Oricrd Rrqn irern/ns .1 nal.,is.. Fred riIk.
MD. 1981 9.

(;r('. Chris and Trish Sarson. Slructured Syserms Anolsis: Tools and Techni1iPH.,.

St. Lo,j)i: McDonnell Douglas. 1982.

(ormaa. Iassan and Douglas B. II. Scott. '-Prot otyping as a Tool in the Speci I (o(

of Iser lletj irernents." In Proc edings of the JEF'.' Fifth .. niil at ternatimoi,3 ("onf(rr (r on S!ste f!tngin criny, pages 333 312. 1!8 I.

1,(1li ah. a ill I).. et a]. Ration oh foi- th) iqn of th, ida Progtra imi n l.a,!1,u .

1 () G6.

. . ,. .i I I11 -I

1 XSI/IEEE Standard 729-1983. IEEE Standard Glossary of Software Engin cc ri n3 Terinology.
Jorgensen, Paul C. "Tutorial On Requirements Specification." In Proceedings of th.

IEEE Gornputer Society's Tenth Annual Internati'onal Oompiuter Softw~are and

Applications Conference, page 182, 1986.
IKenth, Norman L., et al. "Summary of Discussions from OOPSLA-87's Methodolo-3 gies and] GOP Workshop." In Addendun to the Proceedings OOPS5LA '87. A C.11

SJGPLAI.VNotices, 1987.

Ladden. Richard M. "A Survey of Issues to be Considered in the Development ofU an Object- Oriented Development Methodology for Ada," ACM Ada Leter..
9(2):78-89 (M'varch/April 1989).

Land, F.F. and M. Kennedy- McGregor. --Information and Information Systclms,:
Concepts and Perspectives." In Galliers, Robert. editor, Informati'on AayiR

Selected Readings, pages 63-91, Addison-Wesley Publishers Ltd., 1987.I Land, Frank. "Adapting to Changing User Requirements." In Gathiers, Robert, (,d-
itor. Information A nalysis: Selected Readings, pages 203-229, Addison-'AcsleY
Publishers Ltd., 1987.

MiacLennan, Bruce J. Principles of Programming Languages: Design. Ei'alualionl.3 and Imiplemnentation. New York: CBS College Publishing. 1983.

Martin, James and Carma McClure. S5tructured Techniques for Computing. Prentice-
Hall, Inc.. 1985.I \cFarren, Michael R. Using Concept Mapping to Define Proplems andi Idrn-
tify Key Kernels During the Development of a Dcision Suipport Systemn.
MS thesis, AFIT/GST/ENS/87M%-12, Air Force Institnte of Teclimology. 198S7

(A DA 185636).

McN~enamin, Stephen N1. and John F. Palmer. Essential S5ystemns Alnalysis. c

Yobrk: Yourdon Inc., 1984.
Nlittermeir. Roland T., et al. '-Alternatives to Overcome the Commiinicat ion Pt-th-

leins of Formal Requirernents Analysis." In Galliers, Robert. editor. lnfjormna/uii

:1inolysis: Seplected Readi'ngs, pages 153-165, Addison-WXesley Publishers Ltd..
19 7.I Novak, .Joseph 1). and D. B~ob Gowin. Learning How' to Learn. Cambridge UTiniversit v

P~ress. 1981.

1l;tgo- Jotes. Nlii.Practical Projectl Managemetint: IRestorinq Quality to OP[Proj et.,

an~d Sytm.New York: [)orset House Publishing, 1 9R5.

P)aritas. D~avid L. -O the Criteria T1o Be Vsed in Decomposing Systems into Modb -I ifles.- Co tn unicrations of the A1CM, 15(12): 1053- 1058 (Dec-ember 1972).

13113-2

I
I

Pascoe. Geoffrey A. "Elements of Object-Oriented Programming," Byte, 11 (8):139 -
1-14 (August 1986).

Peters, Lawrence. Advanced Structured Analysis and Design. Englewood Cliffs, N.:
Prentice-Hall, 1987.

Pressman, Roger S. Software Engineering: A Practitioner's Approach (2nd Edition).
McGraw-Hill, Inc., 1987.3 Ross, Douglas T. and Kenneth E. Schoman. Jr. "Structured Analysis for Require-
ments Definition," IEEE Transactions on Software Engineering, SE-3(1):6-15
(January 1977).

Seidewitz, Ed and Mike Stark. General Object-Oriented Software Derelopnifnt.
Technical Report SEL-86-002, NASA Goddard Space Flignt Center, VA. 1986.

Seidewitz, Ed and Mike Stark. "Towards a General Object-Oriented Software Devel-
opment Methodology," AM SIGAda Ada Letters, 7(4):1.54-4.67 (.Julv-A ugui
1987).

Shlaer, Sally and Stephen J. Mellor. "Three Approaches to System Analysis," Cow-
puter Design, 27(1):55 (January 1988).

Sprague, Ralph and Eric D. Carlson. Building Effectirc Decision Support Sys/uus.
Englewood Cliffs, NJ: Prentice- Hall Inc., 1982.

3 mphress, David A., "Object Oriented Requirements Analysis." 1988. Class notes
for MATH .5.5.5, Introduction to Software Engineering with Ada. at the Air Force
Institute of Technology (AFIT).

\Valusek, John R. and Dennis G. Fryback. "Information Requirements Determina-
tion: Obstacles Within, Among and Between Participants." In Galliers, Robert.3 editor, Information Analysis: Selected Readings. pages 139-1.51, Addison-
Wesley Publishers Ltd., 1987.

\Vard. Paul T. "How to Integrate Object Orientation with Structured Analysis and
Design," IEEE Software, pages 74-82 (March 1989).

Yadav, Surva B., et al. "Comparison of Analysis Techniques for Information Re-
quirements Determination," Cornnunications of the :AC'1. 31(9):1090 -10)97
(September 1988).

"~, 'Wirdon, Edward. Modern Structurrd .4nalysis. Prentice-Ilall. Inc.. 1989.

I
I
I

BI13-3I

Vita
Capt Steven G. March

a utn

as valedictorian in 1981. Capt March entered the United States Air Force Academy

that year, where he majored in Computer Science. In May of 1985, Capt March was

awarded a Bachelor of Science degree as a distinguished graduate, and commissioned

as an Air Force officer.

Capt March was then assigned to the 3390 Technical Training Group (Keesler

A FB, MS) where he served for three years as an Ada Software Engineering Instructor.

Capt March entered the Air Force Institute of Technology, School of Engineering, in

May of 1988.

VITAlI

1\:CLASSIF IED
SECURITY CLASSIFICATION OF THIS PAGE I Fom Approved

REPORT DOCUMENTATION PAGE aM Vo. 0704-0188

Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
U7.CASSIF-,IED_______________ ______

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unimit ed

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

sFI /E/-Nc/89D-1_____________________ _____

6.NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
* (If applicable)

School of Engineering AFT7ENi6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wri~ht-Patterson AFE' , Ohio 45433i8a. NAME OF FUNDING ISPONSORING 8 b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)
iSDIO T s 1 ProgranT 3.-fic S//P I____________________

8c- ADDRESS -State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

IThe Pentag,'on PROGRAM IPROJECT ITASK IWORK UNIT

* ~asnington, D.C. 20301-7100 ELEMENT NO. INOI NO jACCESSION NO

I I1 TITLE (include Security Classification)
All 0 EJECT' ORIE-NTED ANALYSIS 11IIETHOD FOR Ada AND EM3EEDED SYSTEM~S - UNCLASSIFIED

12 PERSONAL AUTHOR(S)
Steven G. : 'Iarch, Capt, UiSAF-
13a. TYPE OF REPORT 113b, TIME COVERED 114. DATE OF REPORT (Year, Month, Oay) 15s. PAGE COUNT

"4S Thesis FROM _ ___TO _ 1 1989 December I240
16. SUPPLEMENTARY NOTAT ION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Software Engineering, Computer systems analysis
12 05 Computer program documentation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thes-is Chaifman: David A. Umphress, 11aj, USAF

.Assistant Professor of Mvathematics and Computer Science

A~ctract~ S ee 7-everse

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATIO

99UNCLASSIFIED/UNLIMITED 0 SAMVE AS RPT C1 DTIC USERS IUNCLASSIFIED
1

2 a A E O E P NSB E I O V D 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
,David A. Umphress (513) 255-3098 AFIT/ENC

DO Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

I

Object-Oriented Design (OOD) has become a popular I
approach to software development with Ada. One of the
difficulties in applying 00D is that the information avail-
able to the designer (the product of requirements analysis)
± typ±caliy psent a i:mpropriate to COD.
Traditional requirements analysis tools (e.g. data flow
diagrams) organize the software requirements based upon the
functions the system must perform. Recent research suggests
that an object-oriented approach to requirements analysis
is a more natural lead-in to OOD.

The goal of this thesis was to define the tools, steps,
and heuristics for an object-oriented analysis (OOA) method
of modeling software requirements. The choice of tools
used to capture the requirements makes the method parti--
cularly suitable for use when developing embedded systems.
The method emphasizes communication with both the domain
expert and the designer.

The OOA method consists of two phases. The objective
of the firse phase is to capture the software requirements

using unstructured tools such as concept maps, storyboards,
and a list of external events to which the system must re-
spond. The second phase involves structuring these require-
mehts into a model based upon the software objects.

The thesis also addressed the possibility of automated
support for the OOA method, and proposes an 0OA tool to
assist the analyst. The OOA method was applied to a sample
requirements analysis problem to demonstrate the method's
feasibility.

I
I
I
I
I
I
1

